better handling of namespace
This commit is contained in:
@@ -11,6 +11,7 @@ from dotenv import load_dotenv
|
|||||||
|
|
||||||
from lightrag.kg.postgres_impl import PostgreSQLDB, PGKVStorage
|
from lightrag.kg.postgres_impl import PostgreSQLDB, PGKVStorage
|
||||||
from lightrag.storage import JsonKVStorage
|
from lightrag.storage import JsonKVStorage
|
||||||
|
from lightrag.namespace import NameSpace
|
||||||
|
|
||||||
load_dotenv()
|
load_dotenv()
|
||||||
ROOT_DIR = os.environ.get("ROOT_DIR")
|
ROOT_DIR = os.environ.get("ROOT_DIR")
|
||||||
@@ -39,14 +40,14 @@ async def copy_from_postgres_to_json():
|
|||||||
await postgres_db.initdb()
|
await postgres_db.initdb()
|
||||||
|
|
||||||
from_llm_response_cache = PGKVStorage(
|
from_llm_response_cache = PGKVStorage(
|
||||||
namespace="llm_response_cache",
|
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
|
||||||
global_config={"embedding_batch_num": 6},
|
global_config={"embedding_batch_num": 6},
|
||||||
embedding_func=None,
|
embedding_func=None,
|
||||||
db=postgres_db,
|
db=postgres_db,
|
||||||
)
|
)
|
||||||
|
|
||||||
to_llm_response_cache = JsonKVStorage(
|
to_llm_response_cache = JsonKVStorage(
|
||||||
namespace="llm_response_cache",
|
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
|
||||||
global_config={"working_dir": WORKING_DIR},
|
global_config={"working_dir": WORKING_DIR},
|
||||||
embedding_func=None,
|
embedding_func=None,
|
||||||
)
|
)
|
||||||
@@ -72,13 +73,13 @@ async def copy_from_json_to_postgres():
|
|||||||
await postgres_db.initdb()
|
await postgres_db.initdb()
|
||||||
|
|
||||||
from_llm_response_cache = JsonKVStorage(
|
from_llm_response_cache = JsonKVStorage(
|
||||||
namespace="llm_response_cache",
|
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
|
||||||
global_config={"working_dir": WORKING_DIR},
|
global_config={"working_dir": WORKING_DIR},
|
||||||
embedding_func=None,
|
embedding_func=None,
|
||||||
)
|
)
|
||||||
|
|
||||||
to_llm_response_cache = PGKVStorage(
|
to_llm_response_cache = PGKVStorage(
|
||||||
namespace="llm_response_cache",
|
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
|
||||||
global_config={"embedding_batch_num": 6},
|
global_config={"embedding_batch_num": 6},
|
||||||
embedding_func=None,
|
embedding_func=None,
|
||||||
db=postgres_db,
|
db=postgres_db,
|
||||||
|
@@ -13,10 +13,10 @@ if not pm.is_installed("motor"):
|
|||||||
from pymongo import MongoClient
|
from pymongo import MongoClient
|
||||||
from motor.motor_asyncio import AsyncIOMotorClient
|
from motor.motor_asyncio import AsyncIOMotorClient
|
||||||
from typing import Union, List, Tuple
|
from typing import Union, List, Tuple
|
||||||
from lightrag.utils import logger
|
|
||||||
|
|
||||||
from lightrag.base import BaseKVStorage
|
from ..utils import logger
|
||||||
from lightrag.base import BaseGraphStorage
|
from ..base import BaseKVStorage, BaseGraphStorage
|
||||||
|
from ..namespace import NameSpace, is_namespace
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@@ -52,7 +52,7 @@ class MongoKVStorage(BaseKVStorage):
|
|||||||
return set([s for s in data if s not in existing_ids])
|
return set([s for s in data if s not in existing_ids])
|
||||||
|
|
||||||
async def upsert(self, data: dict[str, dict]):
|
async def upsert(self, data: dict[str, dict]):
|
||||||
if self.namespace.endswith("llm_response_cache"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||||||
for mode, items in data.items():
|
for mode, items in data.items():
|
||||||
for k, v in tqdm_async(items.items(), desc="Upserting"):
|
for k, v in tqdm_async(items.items(), desc="Upserting"):
|
||||||
key = f"{mode}_{k}"
|
key = f"{mode}_{k}"
|
||||||
@@ -69,7 +69,7 @@ class MongoKVStorage(BaseKVStorage):
|
|||||||
return data
|
return data
|
||||||
|
|
||||||
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
|
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
|
||||||
if self.namespace.endswith("llm_response_cache"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||||||
res = {}
|
res = {}
|
||||||
v = self._data.find_one({"_id": mode + "_" + id})
|
v = self._data.find_one({"_id": mode + "_" + id})
|
||||||
if v:
|
if v:
|
||||||
|
@@ -19,6 +19,7 @@ from ..base import (
|
|||||||
BaseKVStorage,
|
BaseKVStorage,
|
||||||
BaseVectorStorage,
|
BaseVectorStorage,
|
||||||
)
|
)
|
||||||
|
from ..namespace import NameSpace, is_namespace
|
||||||
|
|
||||||
import oracledb
|
import oracledb
|
||||||
|
|
||||||
@@ -185,7 +186,7 @@ class OracleKVStorage(BaseKVStorage):
|
|||||||
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
||||||
params = {"workspace": self.db.workspace, "id": id}
|
params = {"workspace": self.db.workspace, "id": id}
|
||||||
# print("get_by_id:"+SQL)
|
# print("get_by_id:"+SQL)
|
||||||
if self.namespace.endswith("llm_response_cache"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||||||
array_res = await self.db.query(SQL, params, multirows=True)
|
array_res = await self.db.query(SQL, params, multirows=True)
|
||||||
res = {}
|
res = {}
|
||||||
for row in array_res:
|
for row in array_res:
|
||||||
@@ -201,7 +202,7 @@ class OracleKVStorage(BaseKVStorage):
|
|||||||
"""Specifically for llm_response_cache."""
|
"""Specifically for llm_response_cache."""
|
||||||
SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
||||||
params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
|
params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
|
||||||
if self.namespace.endswith("llm_response_cache"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||||||
array_res = await self.db.query(SQL, params, multirows=True)
|
array_res = await self.db.query(SQL, params, multirows=True)
|
||||||
res = {}
|
res = {}
|
||||||
for row in array_res:
|
for row in array_res:
|
||||||
@@ -218,7 +219,7 @@ class OracleKVStorage(BaseKVStorage):
|
|||||||
params = {"workspace": self.db.workspace}
|
params = {"workspace": self.db.workspace}
|
||||||
# print("get_by_ids:"+SQL)
|
# print("get_by_ids:"+SQL)
|
||||||
res = await self.db.query(SQL, params, multirows=True)
|
res = await self.db.query(SQL, params, multirows=True)
|
||||||
if self.namespace.endswith("llm_response_cache"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||||||
modes = set()
|
modes = set()
|
||||||
dict_res: dict[str, dict] = {}
|
dict_res: dict[str, dict] = {}
|
||||||
for row in res:
|
for row in res:
|
||||||
@@ -256,7 +257,7 @@ class OracleKVStorage(BaseKVStorage):
|
|||||||
async def filter_keys(self, keys: list[str]) -> set[str]:
|
async def filter_keys(self, keys: list[str]) -> set[str]:
|
||||||
"""Return keys that don't exist in storage"""
|
"""Return keys that don't exist in storage"""
|
||||||
SQL = SQL_TEMPLATES["filter_keys"].format(
|
SQL = SQL_TEMPLATES["filter_keys"].format(
|
||||||
table_name=N_T[self.namespace], ids=",".join([f"'{id}'" for id in keys])
|
table_name=namespace_to_table_name(self.namespace), ids=",".join([f"'{id}'" for id in keys])
|
||||||
)
|
)
|
||||||
params = {"workspace": self.db.workspace}
|
params = {"workspace": self.db.workspace}
|
||||||
res = await self.db.query(SQL, params, multirows=True)
|
res = await self.db.query(SQL, params, multirows=True)
|
||||||
@@ -269,7 +270,7 @@ class OracleKVStorage(BaseKVStorage):
|
|||||||
|
|
||||||
################ INSERT METHODS ################
|
################ INSERT METHODS ################
|
||||||
async def upsert(self, data: dict[str, dict]):
|
async def upsert(self, data: dict[str, dict]):
|
||||||
if self.namespace.endswith("text_chunks"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
||||||
list_data = [
|
list_data = [
|
||||||
{
|
{
|
||||||
"id": k,
|
"id": k,
|
||||||
@@ -302,7 +303,7 @@ class OracleKVStorage(BaseKVStorage):
|
|||||||
"status": item["status"],
|
"status": item["status"],
|
||||||
}
|
}
|
||||||
await self.db.execute(merge_sql, _data)
|
await self.db.execute(merge_sql, _data)
|
||||||
if self.namespace.endswith("full_docs"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
|
||||||
for k, v in data.items():
|
for k, v in data.items():
|
||||||
# values.clear()
|
# values.clear()
|
||||||
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
||||||
@@ -313,7 +314,7 @@ class OracleKVStorage(BaseKVStorage):
|
|||||||
}
|
}
|
||||||
await self.db.execute(merge_sql, _data)
|
await self.db.execute(merge_sql, _data)
|
||||||
|
|
||||||
if self.namespace.endswith("llm_response_cache"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||||||
for mode, items in data.items():
|
for mode, items in data.items():
|
||||||
for k, v in items.items():
|
for k, v in items.items():
|
||||||
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
||||||
@@ -329,15 +330,16 @@ class OracleKVStorage(BaseKVStorage):
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
async def change_status(self, id: str, status: str):
|
async def change_status(self, id: str, status: str):
|
||||||
SQL = SQL_TEMPLATES["change_status"].format(table_name=N_T[self.namespace])
|
SQL = SQL_TEMPLATES["change_status"].format(table_name=namespace_to_table_name(self.namespace))
|
||||||
params = {"workspace": self.db.workspace, "id": id, "status": status}
|
params = {"workspace": self.db.workspace, "id": id, "status": status}
|
||||||
await self.db.execute(SQL, params)
|
await self.db.execute(SQL, params)
|
||||||
|
|
||||||
async def index_done_callback(self):
|
async def index_done_callback(self):
|
||||||
for n in ("full_docs", "text_chunks"):
|
if is_namespace(
|
||||||
if self.namespace.endswith(n):
|
self.namespace,
|
||||||
|
(NameSpace.KV_STORE_FULL_DOCS, NameSpace.KV_STORE_TEXT_CHUNKS),
|
||||||
|
):
|
||||||
logger.info("full doc and chunk data had been saved into oracle db!")
|
logger.info("full doc and chunk data had been saved into oracle db!")
|
||||||
break
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@@ -614,13 +616,19 @@ class OracleGraphStorage(BaseGraphStorage):
|
|||||||
|
|
||||||
|
|
||||||
N_T = {
|
N_T = {
|
||||||
"full_docs": "LIGHTRAG_DOC_FULL",
|
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
||||||
"text_chunks": "LIGHTRAG_DOC_CHUNKS",
|
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
||||||
"chunks": "LIGHTRAG_DOC_CHUNKS",
|
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
||||||
"entities": "LIGHTRAG_GRAPH_NODES",
|
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_GRAPH_NODES",
|
||||||
"relationships": "LIGHTRAG_GRAPH_EDGES",
|
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_GRAPH_EDGES",
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def namespace_to_table_name(namespace: str) -> str:
|
||||||
|
for k, v in N_T.items():
|
||||||
|
if is_namespace(namespace, k):
|
||||||
|
return v
|
||||||
|
|
||||||
|
|
||||||
TABLES = {
|
TABLES = {
|
||||||
"LIGHTRAG_DOC_FULL": {
|
"LIGHTRAG_DOC_FULL": {
|
||||||
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
||||||
|
@@ -32,6 +32,7 @@ from ..base import (
|
|||||||
BaseGraphStorage,
|
BaseGraphStorage,
|
||||||
T,
|
T,
|
||||||
)
|
)
|
||||||
|
from ..namespace import NameSpace, is_namespace
|
||||||
|
|
||||||
if sys.platform.startswith("win"):
|
if sys.platform.startswith("win"):
|
||||||
import asyncio.windows_events
|
import asyncio.windows_events
|
||||||
@@ -187,7 +188,7 @@ class PGKVStorage(BaseKVStorage):
|
|||||||
"""Get doc_full data by id."""
|
"""Get doc_full data by id."""
|
||||||
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
||||||
params = {"workspace": self.db.workspace, "id": id}
|
params = {"workspace": self.db.workspace, "id": id}
|
||||||
if self.namespace.endswith("llm_response_cache"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||||||
array_res = await self.db.query(sql, params, multirows=True)
|
array_res = await self.db.query(sql, params, multirows=True)
|
||||||
res = {}
|
res = {}
|
||||||
for row in array_res:
|
for row in array_res:
|
||||||
@@ -203,7 +204,7 @@ class PGKVStorage(BaseKVStorage):
|
|||||||
"""Specifically for llm_response_cache."""
|
"""Specifically for llm_response_cache."""
|
||||||
sql = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
sql = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
||||||
params = {"workspace": self.db.workspace, mode: mode, "id": id}
|
params = {"workspace": self.db.workspace, mode: mode, "id": id}
|
||||||
if self.namespace.endswith("llm_response_cache"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||||||
array_res = await self.db.query(sql, params, multirows=True)
|
array_res = await self.db.query(sql, params, multirows=True)
|
||||||
res = {}
|
res = {}
|
||||||
for row in array_res:
|
for row in array_res:
|
||||||
@@ -219,7 +220,7 @@ class PGKVStorage(BaseKVStorage):
|
|||||||
ids=",".join([f"'{id}'" for id in ids])
|
ids=",".join([f"'{id}'" for id in ids])
|
||||||
)
|
)
|
||||||
params = {"workspace": self.db.workspace}
|
params = {"workspace": self.db.workspace}
|
||||||
if self.namespace.endswith("llm_response_cache"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||||||
array_res = await self.db.query(sql, params, multirows=True)
|
array_res = await self.db.query(sql, params, multirows=True)
|
||||||
modes = set()
|
modes = set()
|
||||||
dict_res: dict[str, dict] = {}
|
dict_res: dict[str, dict] = {}
|
||||||
@@ -239,7 +240,7 @@ class PGKVStorage(BaseKVStorage):
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
async def all_keys(self) -> list[dict]:
|
async def all_keys(self) -> list[dict]:
|
||||||
if self.namespace.endswith("llm_response_cache"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||||||
sql = "select workspace,mode,id from lightrag_llm_cache"
|
sql = "select workspace,mode,id from lightrag_llm_cache"
|
||||||
res = await self.db.query(sql, multirows=True)
|
res = await self.db.query(sql, multirows=True)
|
||||||
return res
|
return res
|
||||||
@@ -251,7 +252,7 @@ class PGKVStorage(BaseKVStorage):
|
|||||||
async def filter_keys(self, keys: List[str]) -> Set[str]:
|
async def filter_keys(self, keys: List[str]) -> Set[str]:
|
||||||
"""Filter out duplicated content"""
|
"""Filter out duplicated content"""
|
||||||
sql = SQL_TEMPLATES["filter_keys"].format(
|
sql = SQL_TEMPLATES["filter_keys"].format(
|
||||||
table_name=NAMESPACE_TABLE_MAP[self.namespace],
|
table_name=namespace_to_table_name(self.namespace),
|
||||||
ids=",".join([f"'{id}'" for id in keys]),
|
ids=",".join([f"'{id}'" for id in keys]),
|
||||||
)
|
)
|
||||||
params = {"workspace": self.db.workspace}
|
params = {"workspace": self.db.workspace}
|
||||||
@@ -270,9 +271,9 @@ class PGKVStorage(BaseKVStorage):
|
|||||||
|
|
||||||
################ INSERT METHODS ################
|
################ INSERT METHODS ################
|
||||||
async def upsert(self, data: Dict[str, dict]):
|
async def upsert(self, data: Dict[str, dict]):
|
||||||
if self.namespace.endswith("text_chunks"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
||||||
pass
|
pass
|
||||||
elif self.namespace.endswith("full_docs"):
|
elif is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
|
||||||
for k, v in data.items():
|
for k, v in data.items():
|
||||||
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
|
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
|
||||||
_data = {
|
_data = {
|
||||||
@@ -281,7 +282,7 @@ class PGKVStorage(BaseKVStorage):
|
|||||||
"workspace": self.db.workspace,
|
"workspace": self.db.workspace,
|
||||||
}
|
}
|
||||||
await self.db.execute(upsert_sql, _data)
|
await self.db.execute(upsert_sql, _data)
|
||||||
elif self.namespace.endswith("llm_response_cache"):
|
elif is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
||||||
for mode, items in data.items():
|
for mode, items in data.items():
|
||||||
for k, v in items.items():
|
for k, v in items.items():
|
||||||
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
||||||
@@ -296,12 +297,11 @@ class PGKVStorage(BaseKVStorage):
|
|||||||
await self.db.execute(upsert_sql, _data)
|
await self.db.execute(upsert_sql, _data)
|
||||||
|
|
||||||
async def index_done_callback(self):
|
async def index_done_callback(self):
|
||||||
for n in ("full_docs", "text_chunks"):
|
if is_namespace(
|
||||||
if self.namespace.endswith(n):
|
self.namespace,
|
||||||
logger.info(
|
(NameSpace.KV_STORE_FULL_DOCS, NameSpace.KV_STORE_TEXT_CHUNKS),
|
||||||
"full doc and chunk data had been saved into postgresql db!"
|
):
|
||||||
)
|
logger.info("full doc and chunk data had been saved into postgresql db!")
|
||||||
break
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@@ -393,11 +393,11 @@ class PGVectorStorage(BaseVectorStorage):
|
|||||||
for i, d in enumerate(list_data):
|
for i, d in enumerate(list_data):
|
||||||
d["__vector__"] = embeddings[i]
|
d["__vector__"] = embeddings[i]
|
||||||
for item in list_data:
|
for item in list_data:
|
||||||
if self.namespace.endswith("chunks"):
|
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_CHUNKS):
|
||||||
upsert_sql, data = self._upsert_chunks(item)
|
upsert_sql, data = self._upsert_chunks(item)
|
||||||
elif self.namespace.endswith("entities"):
|
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_ENTITIES):
|
||||||
upsert_sql, data = self._upsert_entities(item)
|
upsert_sql, data = self._upsert_entities(item)
|
||||||
elif self.namespace.endswith("relationships"):
|
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_RELATIONSHIPS):
|
||||||
upsert_sql, data = self._upsert_relationships(item)
|
upsert_sql, data = self._upsert_relationships(item)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"{self.namespace} is not supported")
|
raise ValueError(f"{self.namespace} is not supported")
|
||||||
@@ -1027,16 +1027,22 @@ class PGGraphStorage(BaseGraphStorage):
|
|||||||
|
|
||||||
|
|
||||||
NAMESPACE_TABLE_MAP = {
|
NAMESPACE_TABLE_MAP = {
|
||||||
"full_docs": "LIGHTRAG_DOC_FULL",
|
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
||||||
"text_chunks": "LIGHTRAG_DOC_CHUNKS",
|
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
||||||
"chunks": "LIGHTRAG_DOC_CHUNKS",
|
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
||||||
"entities": "LIGHTRAG_VDB_ENTITY",
|
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_VDB_ENTITY",
|
||||||
"relationships": "LIGHTRAG_VDB_RELATION",
|
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_VDB_RELATION",
|
||||||
"doc_status": "LIGHTRAG_DOC_STATUS",
|
NameSpace.DOC_STATUS: "LIGHTRAG_DOC_STATUS",
|
||||||
"llm_response_cache": "LIGHTRAG_LLM_CACHE",
|
NameSpace.KV_STORE_LLM_RESPONSE_CACHE: "LIGHTRAG_LLM_CACHE",
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def namespace_to_table_name(namespace: str) -> str:
|
||||||
|
for k, v in NAMESPACE_TABLE_MAP.items():
|
||||||
|
if is_namespace(namespace, k):
|
||||||
|
return v
|
||||||
|
|
||||||
|
|
||||||
TABLES = {
|
TABLES = {
|
||||||
"LIGHTRAG_DOC_FULL": {
|
"LIGHTRAG_DOC_FULL": {
|
||||||
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
||||||
|
@@ -12,7 +12,9 @@ if not pm.is_installed("asyncpg"):
|
|||||||
import asyncpg
|
import asyncpg
|
||||||
import psycopg
|
import psycopg
|
||||||
from psycopg_pool import AsyncConnectionPool
|
from psycopg_pool import AsyncConnectionPool
|
||||||
from lightrag.kg.postgres_impl import PostgreSQLDB, PGGraphStorage
|
|
||||||
|
from ..kg.postgres_impl import PostgreSQLDB, PGGraphStorage
|
||||||
|
from ..namespace import NameSpace
|
||||||
|
|
||||||
DB = "rag"
|
DB = "rag"
|
||||||
USER = "rag"
|
USER = "rag"
|
||||||
@@ -76,7 +78,7 @@ db = PostgreSQLDB(
|
|||||||
async def query_with_age():
|
async def query_with_age():
|
||||||
await db.initdb()
|
await db.initdb()
|
||||||
graph = PGGraphStorage(
|
graph = PGGraphStorage(
|
||||||
namespace="chunk_entity_relation",
|
namespace=NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION,
|
||||||
global_config={},
|
global_config={},
|
||||||
embedding_func=None,
|
embedding_func=None,
|
||||||
)
|
)
|
||||||
@@ -92,7 +94,7 @@ async def query_with_age():
|
|||||||
async def create_edge_with_age():
|
async def create_edge_with_age():
|
||||||
await db.initdb()
|
await db.initdb()
|
||||||
graph = PGGraphStorage(
|
graph = PGGraphStorage(
|
||||||
namespace="chunk_entity_relation",
|
namespace=NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION,
|
||||||
global_config={},
|
global_config={},
|
||||||
embedding_func=None,
|
embedding_func=None,
|
||||||
)
|
)
|
||||||
|
@@ -14,8 +14,9 @@ if not pm.is_installed("sqlalchemy"):
|
|||||||
from sqlalchemy import create_engine, text
|
from sqlalchemy import create_engine, text
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
from lightrag.base import BaseVectorStorage, BaseKVStorage, BaseGraphStorage
|
from ..base import BaseVectorStorage, BaseKVStorage, BaseGraphStorage
|
||||||
from lightrag.utils import logger
|
from ..utils import logger
|
||||||
|
from ..namespace import NameSpace, is_namespace
|
||||||
|
|
||||||
|
|
||||||
class TiDB(object):
|
class TiDB(object):
|
||||||
@@ -138,8 +139,8 @@ class TiDBKVStorage(BaseKVStorage):
|
|||||||
async def filter_keys(self, keys: list[str]) -> set[str]:
|
async def filter_keys(self, keys: list[str]) -> set[str]:
|
||||||
"""过滤掉重复内容"""
|
"""过滤掉重复内容"""
|
||||||
SQL = SQL_TEMPLATES["filter_keys"].format(
|
SQL = SQL_TEMPLATES["filter_keys"].format(
|
||||||
table_name=N_T[self.namespace],
|
table_name=namespace_to_table_name(self.namespace),
|
||||||
id_field=N_ID[self.namespace],
|
id_field=namespace_to_id(self.namespace),
|
||||||
ids=",".join([f"'{id}'" for id in keys]),
|
ids=",".join([f"'{id}'" for id in keys]),
|
||||||
)
|
)
|
||||||
try:
|
try:
|
||||||
@@ -160,7 +161,7 @@ class TiDBKVStorage(BaseKVStorage):
|
|||||||
async def upsert(self, data: dict[str, dict]):
|
async def upsert(self, data: dict[str, dict]):
|
||||||
left_data = {k: v for k, v in data.items() if k not in self._data}
|
left_data = {k: v for k, v in data.items() if k not in self._data}
|
||||||
self._data.update(left_data)
|
self._data.update(left_data)
|
||||||
if self.namespace.endswith("text_chunks"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
||||||
list_data = [
|
list_data = [
|
||||||
{
|
{
|
||||||
"__id__": k,
|
"__id__": k,
|
||||||
@@ -196,7 +197,7 @@ class TiDBKVStorage(BaseKVStorage):
|
|||||||
)
|
)
|
||||||
await self.db.execute(merge_sql, data)
|
await self.db.execute(merge_sql, data)
|
||||||
|
|
||||||
if self.namespace.endswith("full_docs"):
|
if is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
|
||||||
merge_sql = SQL_TEMPLATES["upsert_doc_full"]
|
merge_sql = SQL_TEMPLATES["upsert_doc_full"]
|
||||||
data = []
|
data = []
|
||||||
for k, v in self._data.items():
|
for k, v in self._data.items():
|
||||||
@@ -211,10 +212,11 @@ class TiDBKVStorage(BaseKVStorage):
|
|||||||
return left_data
|
return left_data
|
||||||
|
|
||||||
async def index_done_callback(self):
|
async def index_done_callback(self):
|
||||||
for n in ("full_docs", "text_chunks"):
|
if is_namespace(
|
||||||
if self.namespace.endswith(n):
|
self.namespace,
|
||||||
|
(NameSpace.KV_STORE_FULL_DOCS, NameSpace.KV_STORE_TEXT_CHUNKS),
|
||||||
|
):
|
||||||
logger.info("full doc and chunk data had been saved into TiDB db!")
|
logger.info("full doc and chunk data had been saved into TiDB db!")
|
||||||
break
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@@ -260,7 +262,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|||||||
if not len(data):
|
if not len(data):
|
||||||
logger.warning("You insert an empty data to vector DB")
|
logger.warning("You insert an empty data to vector DB")
|
||||||
return []
|
return []
|
||||||
if self.namespace.endswith("chunks"):
|
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_CHUNKS):
|
||||||
return []
|
return []
|
||||||
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
||||||
|
|
||||||
@@ -290,7 +292,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|||||||
for i, d in enumerate(list_data):
|
for i, d in enumerate(list_data):
|
||||||
d["content_vector"] = embeddings[i]
|
d["content_vector"] = embeddings[i]
|
||||||
|
|
||||||
if self.namespace.endswith("entities"):
|
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_ENTITIES):
|
||||||
data = []
|
data = []
|
||||||
for item in list_data:
|
for item in list_data:
|
||||||
param = {
|
param = {
|
||||||
@@ -311,7 +313,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|||||||
merge_sql = SQL_TEMPLATES["insert_entity"]
|
merge_sql = SQL_TEMPLATES["insert_entity"]
|
||||||
await self.db.execute(merge_sql, data)
|
await self.db.execute(merge_sql, data)
|
||||||
|
|
||||||
elif self.namespace.endswith("relationships"):
|
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_RELATIONSHIPS):
|
||||||
data = []
|
data = []
|
||||||
for item in list_data:
|
for item in list_data:
|
||||||
param = {
|
param = {
|
||||||
@@ -470,20 +472,33 @@ class TiDBGraphStorage(BaseGraphStorage):
|
|||||||
|
|
||||||
|
|
||||||
N_T = {
|
N_T = {
|
||||||
"full_docs": "LIGHTRAG_DOC_FULL",
|
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
||||||
"text_chunks": "LIGHTRAG_DOC_CHUNKS",
|
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
||||||
"chunks": "LIGHTRAG_DOC_CHUNKS",
|
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
||||||
"entities": "LIGHTRAG_GRAPH_NODES",
|
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_GRAPH_NODES",
|
||||||
"relationships": "LIGHTRAG_GRAPH_EDGES",
|
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_GRAPH_EDGES",
|
||||||
}
|
}
|
||||||
N_ID = {
|
N_ID = {
|
||||||
"full_docs": "doc_id",
|
NameSpace.KV_STORE_FULL_DOCS: "doc_id",
|
||||||
"text_chunks": "chunk_id",
|
NameSpace.KV_STORE_TEXT_CHUNKS: "chunk_id",
|
||||||
"chunks": "chunk_id",
|
NameSpace.VECTOR_STORE_CHUNKS: "chunk_id",
|
||||||
"entities": "entity_id",
|
NameSpace.VECTOR_STORE_ENTITIES: "entity_id",
|
||||||
"relationships": "relation_id",
|
NameSpace.VECTOR_STORE_RELATIONSHIPS: "relation_id",
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def namespace_to_table_name(namespace: str) -> str:
|
||||||
|
for k, v in N_T.items():
|
||||||
|
if is_namespace(namespace, k):
|
||||||
|
return v
|
||||||
|
|
||||||
|
|
||||||
|
def namespace_to_id(namespace: str) -> str:
|
||||||
|
for k, v in N_ID.items():
|
||||||
|
if is_namespace(namespace, k):
|
||||||
|
return v
|
||||||
|
|
||||||
|
|
||||||
TABLES = {
|
TABLES = {
|
||||||
"LIGHTRAG_DOC_FULL": {
|
"LIGHTRAG_DOC_FULL": {
|
||||||
"ddl": """
|
"ddl": """
|
||||||
|
@@ -35,6 +35,8 @@ from .base import (
|
|||||||
DocStatus,
|
DocStatus,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
from .namespace import NameSpace, make_namespace
|
||||||
|
|
||||||
from .prompt import GRAPH_FIELD_SEP
|
from .prompt import GRAPH_FIELD_SEP
|
||||||
|
|
||||||
STORAGES = {
|
STORAGES = {
|
||||||
@@ -228,8 +230,13 @@ class LightRAG:
|
|||||||
self.graph_storage_cls, global_config=global_config
|
self.graph_storage_cls, global_config=global_config
|
||||||
)
|
)
|
||||||
|
|
||||||
|
self.json_doc_status_storage = self.key_string_value_json_storage_cls(
|
||||||
|
namespace=self.namespace_prefix + "json_doc_status_storage",
|
||||||
|
embedding_func=None,
|
||||||
|
)
|
||||||
|
|
||||||
self.llm_response_cache = self.key_string_value_json_storage_cls(
|
self.llm_response_cache = self.key_string_value_json_storage_cls(
|
||||||
namespace=self.namespace_prefix + "llm_response_cache",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -237,34 +244,33 @@ class LightRAG:
|
|||||||
# add embedding func by walter
|
# add embedding func by walter
|
||||||
####
|
####
|
||||||
self.full_docs = self.key_string_value_json_storage_cls(
|
self.full_docs = self.key_string_value_json_storage_cls(
|
||||||
namespace=self.namespace_prefix + "full_docs",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_FULL_DOCS),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
)
|
)
|
||||||
self.text_chunks = self.key_string_value_json_storage_cls(
|
self.text_chunks = self.key_string_value_json_storage_cls(
|
||||||
namespace=self.namespace_prefix + "text_chunks",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_TEXT_CHUNKS),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
)
|
)
|
||||||
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
||||||
namespace=self.namespace_prefix + "chunk_entity_relation",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
)
|
)
|
||||||
|
|
||||||
####
|
####
|
||||||
# add embedding func by walter over
|
# add embedding func by walter over
|
||||||
####
|
####
|
||||||
|
|
||||||
self.entities_vdb = self.vector_db_storage_cls(
|
self.entities_vdb = self.vector_db_storage_cls(
|
||||||
namespace=self.namespace_prefix + "entities",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.VECTOR_STORE_ENTITIES),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
meta_fields={"entity_name"},
|
meta_fields={"entity_name"},
|
||||||
)
|
)
|
||||||
self.relationships_vdb = self.vector_db_storage_cls(
|
self.relationships_vdb = self.vector_db_storage_cls(
|
||||||
namespace=self.namespace_prefix + "relationships",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.VECTOR_STORE_RELATIONSHIPS),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
meta_fields={"src_id", "tgt_id"},
|
meta_fields={"src_id", "tgt_id"},
|
||||||
)
|
)
|
||||||
self.chunks_vdb = self.vector_db_storage_cls(
|
self.chunks_vdb = self.vector_db_storage_cls(
|
||||||
namespace=self.namespace_prefix + "chunks",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.VECTOR_STORE_CHUNKS),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -274,7 +280,7 @@ class LightRAG:
|
|||||||
hashing_kv = self.llm_response_cache
|
hashing_kv = self.llm_response_cache
|
||||||
else:
|
else:
|
||||||
hashing_kv = self.key_string_value_json_storage_cls(
|
hashing_kv = self.key_string_value_json_storage_cls(
|
||||||
namespace=self.namespace_prefix + "llm_response_cache",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -289,7 +295,7 @@ class LightRAG:
|
|||||||
# Initialize document status storage
|
# Initialize document status storage
|
||||||
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
|
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
|
||||||
self.doc_status = self.doc_status_storage_cls(
|
self.doc_status = self.doc_status_storage_cls(
|
||||||
namespace=self.namespace_prefix + "doc_status",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.DOC_STATUS),
|
||||||
global_config=global_config,
|
global_config=global_config,
|
||||||
embedding_func=None,
|
embedding_func=None,
|
||||||
)
|
)
|
||||||
@@ -925,7 +931,7 @@ class LightRAG:
|
|||||||
if self.llm_response_cache
|
if self.llm_response_cache
|
||||||
and hasattr(self.llm_response_cache, "global_config")
|
and hasattr(self.llm_response_cache, "global_config")
|
||||||
else self.key_string_value_json_storage_cls(
|
else self.key_string_value_json_storage_cls(
|
||||||
namespace=self.namespace_prefix + "llm_response_cache",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
||||||
global_config=asdict(self),
|
global_config=asdict(self),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
),
|
),
|
||||||
@@ -942,7 +948,7 @@ class LightRAG:
|
|||||||
if self.llm_response_cache
|
if self.llm_response_cache
|
||||||
and hasattr(self.llm_response_cache, "global_config")
|
and hasattr(self.llm_response_cache, "global_config")
|
||||||
else self.key_string_value_json_storage_cls(
|
else self.key_string_value_json_storage_cls(
|
||||||
namespace=self.namespace_prefix + "llm_response_cache",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
||||||
global_config=asdict(self),
|
global_config=asdict(self),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
),
|
),
|
||||||
@@ -961,7 +967,7 @@ class LightRAG:
|
|||||||
if self.llm_response_cache
|
if self.llm_response_cache
|
||||||
and hasattr(self.llm_response_cache, "global_config")
|
and hasattr(self.llm_response_cache, "global_config")
|
||||||
else self.key_string_value_json_storage_cls(
|
else self.key_string_value_json_storage_cls(
|
||||||
namespace=self.namespace_prefix + "llm_response_cache",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
||||||
global_config=asdict(self),
|
global_config=asdict(self),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
),
|
),
|
||||||
@@ -1002,7 +1008,7 @@ class LightRAG:
|
|||||||
global_config=asdict(self),
|
global_config=asdict(self),
|
||||||
hashing_kv=self.llm_response_cache
|
hashing_kv=self.llm_response_cache
|
||||||
or self.key_string_value_json_storage_cls(
|
or self.key_string_value_json_storage_cls(
|
||||||
namespace=self.namespace_prefix + "llm_response_cache",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
||||||
global_config=asdict(self),
|
global_config=asdict(self),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
),
|
),
|
||||||
@@ -1033,7 +1039,7 @@ class LightRAG:
|
|||||||
if self.llm_response_cache
|
if self.llm_response_cache
|
||||||
and hasattr(self.llm_response_cache, "global_config")
|
and hasattr(self.llm_response_cache, "global_config")
|
||||||
else self.key_string_value_json_storage_cls(
|
else self.key_string_value_json_storage_cls(
|
||||||
namespace=self.namespace_prefix + "llm_response_cache",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
||||||
global_config=asdict(self),
|
global_config=asdict(self),
|
||||||
embedding_func=self.embedding_funcne,
|
embedding_func=self.embedding_funcne,
|
||||||
),
|
),
|
||||||
@@ -1049,7 +1055,7 @@ class LightRAG:
|
|||||||
if self.llm_response_cache
|
if self.llm_response_cache
|
||||||
and hasattr(self.llm_response_cache, "global_config")
|
and hasattr(self.llm_response_cache, "global_config")
|
||||||
else self.key_string_value_json_storage_cls(
|
else self.key_string_value_json_storage_cls(
|
||||||
namespace=self.namespace_prefix + "llm_response_cache",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
||||||
global_config=asdict(self),
|
global_config=asdict(self),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
),
|
),
|
||||||
@@ -1068,7 +1074,7 @@ class LightRAG:
|
|||||||
if self.llm_response_cache
|
if self.llm_response_cache
|
||||||
and hasattr(self.llm_response_cache, "global_config")
|
and hasattr(self.llm_response_cache, "global_config")
|
||||||
else self.key_string_value_json_storage_cls(
|
else self.key_string_value_json_storage_cls(
|
||||||
namespace=self.namespace_prefix + "llm_response_cache",
|
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
||||||
global_config=asdict(self),
|
global_config=asdict(self),
|
||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
),
|
),
|
||||||
|
25
lightrag/namespace.py
Normal file
25
lightrag/namespace.py
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
from typing import Iterable
|
||||||
|
|
||||||
|
|
||||||
|
class NameSpace:
|
||||||
|
KV_STORE_FULL_DOCS = "full_docs"
|
||||||
|
KV_STORE_TEXT_CHUNKS = "text_chunks"
|
||||||
|
KV_STORE_LLM_RESPONSE_CACHE = "llm_response_cache"
|
||||||
|
|
||||||
|
VECTOR_STORE_ENTITIES = "entities"
|
||||||
|
VECTOR_STORE_RELATIONSHIPS = "relationships"
|
||||||
|
VECTOR_STORE_CHUNKS = "chunks"
|
||||||
|
|
||||||
|
GRAPH_STORE_CHUNK_ENTITY_RELATION = "chunk_entity_relation"
|
||||||
|
|
||||||
|
DOC_STATUS = "doc_status"
|
||||||
|
|
||||||
|
|
||||||
|
def make_namespace(prefix: str, base_namespace: str):
|
||||||
|
return prefix + base_namespace
|
||||||
|
|
||||||
|
|
||||||
|
def is_namespace(namespace: str, base_namespace: str | Iterable[str]):
|
||||||
|
if isinstance(base_namespace, str):
|
||||||
|
return namespace.endswith(base_namespace)
|
||||||
|
return any(is_namespace(namespace, ns) for ns in base_namespace)
|
Reference in New Issue
Block a user