fix pre commit
This commit is contained in:
@@ -1,11 +1,11 @@
|
||||
import sys, os
|
||||
import sys
|
||||
import os
|
||||
from pathlib import Path
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
from lightrag.kg.oracle_impl import OracleDB
|
||||
|
||||
print(os.getcwd())
|
||||
@@ -25,6 +25,7 @@ EMBEDMODEL = "cohere.embed-multilingual-v3.0"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
@@ -66,22 +67,21 @@ async def main():
|
||||
# More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html
|
||||
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
||||
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
||||
oracle_db = OracleDB(config={
|
||||
"user":"username",
|
||||
"password":"xxxxxxxxx",
|
||||
"dsn":"xxxxxxx_medium",
|
||||
"config_dir":"dir/path/to/oracle/config",
|
||||
"wallet_location":"dir/path/to/oracle/wallet",
|
||||
"wallet_password":"xxxxxxxxx",
|
||||
"workspace":"company" # specify which docs you want to store and query
|
||||
oracle_db = OracleDB(
|
||||
config={
|
||||
"user": "username",
|
||||
"password": "xxxxxxxxx",
|
||||
"dsn": "xxxxxxx_medium",
|
||||
"config_dir": "dir/path/to/oracle/config",
|
||||
"wallet_location": "dir/path/to/oracle/wallet",
|
||||
"wallet_password": "xxxxxxxxx",
|
||||
"workspace": "company", # specify which docs you want to store and query
|
||||
}
|
||||
)
|
||||
|
||||
)
|
||||
|
||||
# Check if Oracle DB tables exist, if not, tables will be created
|
||||
await oracle_db.check_tables()
|
||||
|
||||
|
||||
# Initialize LightRAG
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
rag = LightRAG(
|
||||
@@ -93,10 +93,10 @@ async def main():
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=512,
|
||||
func=embedding_func,
|
||||
),
|
||||
graph_storage = "OracleGraphStorage",
|
||||
kv_storage="OracleKVStorage",
|
||||
vector_storage="OracleVectorDBStorage"
|
||||
),
|
||||
graph_storage="OracleGraphStorage",
|
||||
kv_storage="OracleKVStorage",
|
||||
vector_storage="OracleVectorDBStorage",
|
||||
)
|
||||
|
||||
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||
@@ -106,18 +106,23 @@ async def main():
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
await rag.ainsert(f.read())
|
||||
|
||||
# Perform search in different modes
|
||||
modes = ["naive", "local", "global", "hybrid"]
|
||||
for mode in modes:
|
||||
print("="*20, mode, "="*20)
|
||||
print(await rag.aquery("What are the top themes in this story?", param=QueryParam(mode=mode)))
|
||||
print("-"*100, "\n")
|
||||
print("=" * 20, mode, "=" * 20)
|
||||
print(
|
||||
await rag.aquery(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode=mode),
|
||||
)
|
||||
)
|
||||
print("-" * 100, "\n")
|
||||
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
asyncio.run(main())
|
||||
|
Reference in New Issue
Block a user