diff --git a/README.md b/README.md
index 7fab9a01..d11b1691 100644
--- a/README.md
+++ b/README.md
@@ -397,6 +397,125 @@ if __name__ == "__main__":
+## API Server Implementation
+
+LightRAG also provides a FastAPI-based server implementation for RESTful API access to RAG operations. This allows you to run LightRAG as a service and interact with it through HTTP requests.
+
+### Setting up the API Server
+
+Click to expand setup instructions
+
+1. First, ensure you have the required dependencies:
+```bash
+pip install fastapi uvicorn pydantic
+```
+
+2. Set up your environment variables:
+```bash
+export RAG_DIR="your_index_directory" # Optional: Defaults to "index_default"
+```
+
+3. Run the API server:
+```bash
+python examples/lightrag_api_openai_compatible_demo.py
+```
+
+The server will start on `http://0.0.0.0:8020`.
+
+
+### API Endpoints
+
+The API server provides the following endpoints:
+
+#### 1. Query Endpoint
+
+Click to view Query endpoint details
+
+- **URL:** `/query`
+- **Method:** POST
+- **Body:**
+```json
+{
+ "query": "Your question here",
+ "mode": "hybrid" // Can be "naive", "local", "global", or "hybrid"
+}
+```
+- **Example:**
+```bash
+curl -X POST "http://127.0.0.1:8020/query" \
+ -H "Content-Type: application/json" \
+ -d '{"query": "What are the main themes?", "mode": "hybrid"}'
+```
+
+
+#### 2. Insert Text Endpoint
+
+Click to view Insert Text endpoint details
+
+- **URL:** `/insert`
+- **Method:** POST
+- **Body:**
+```json
+{
+ "text": "Your text content here"
+}
+```
+- **Example:**
+```bash
+curl -X POST "http://127.0.0.1:8020/insert" \
+ -H "Content-Type: application/json" \
+ -d '{"text": "Content to be inserted into RAG"}'
+```
+
+
+#### 3. Insert File Endpoint
+
+Click to view Insert File endpoint details
+
+- **URL:** `/insert_file`
+- **Method:** POST
+- **Body:**
+```json
+{
+ "file_path": "path/to/your/file.txt"
+}
+```
+- **Example:**
+```bash
+curl -X POST "http://127.0.0.1:8020/insert_file" \
+ -H "Content-Type: application/json" \
+ -d '{"file_path": "./book.txt"}'
+```
+
+
+#### 4. Health Check Endpoint
+
+Click to view Health Check endpoint details
+
+- **URL:** `/health`
+- **Method:** GET
+- **Example:**
+```bash
+curl -X GET "http://127.0.0.1:8020/health"
+```
+
+
+### Configuration
+
+The API server can be configured using environment variables:
+- `RAG_DIR`: Directory for storing the RAG index (default: "index_default")
+- API keys and base URLs should be configured in the code for your specific LLM and embedding model providers
+
+### Error Handling
+
+Click to view error handling details
+
+The API includes comprehensive error handling:
+- File not found errors (404)
+- Processing errors (500)
+- Supports multiple file encodings (UTF-8 and GBK)
+
+
## Evaluation
### Dataset
The dataset used in LightRAG can be downloaded from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain).
diff --git a/examples/lightrag_api_openai_compatible_demo.py b/examples/lightrag_api_openai_compatible_demo.py
new file mode 100644
index 00000000..2cd262bb
--- /dev/null
+++ b/examples/lightrag_api_openai_compatible_demo.py
@@ -0,0 +1,164 @@
+from fastapi import FastAPI, HTTPException
+from pydantic import BaseModel
+import os
+from lightrag import LightRAG, QueryParam
+from lightrag.llm import openai_complete_if_cache, openai_embedding
+from lightrag.utils import EmbeddingFunc
+import numpy as np
+from typing import Optional
+import asyncio
+import nest_asyncio
+
+# Apply nest_asyncio to solve event loop issues
+nest_asyncio.apply()
+
+DEFAULT_RAG_DIR = "index_default"
+app = FastAPI(title="LightRAG API", description="API for RAG operations")
+
+# Configure working directory
+WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
+print(f"WORKING_DIR: {WORKING_DIR}")
+if not os.path.exists(WORKING_DIR):
+ os.mkdir(WORKING_DIR)
+
+# LLM model function
+
+
+async def llm_model_func(
+ prompt, system_prompt=None, history_messages=[], **kwargs
+) -> str:
+ return await openai_complete_if_cache(
+ "gpt-4o-mini",
+ prompt,
+ system_prompt=system_prompt,
+ history_messages=history_messages,
+ api_key="YOUR_API_KEY",
+ base_url="YourURL/v1",
+ **kwargs,
+ )
+
+
+# Embedding function
+
+
+async def embedding_func(texts: list[str]) -> np.ndarray:
+ return await openai_embedding(
+ texts,
+ model="text-embedding-3-large",
+ api_key="YOUR_API_KEY",
+ base_url="YourURL/v1",
+ )
+
+
+# Initialize RAG instance
+rag = LightRAG(
+ working_dir=WORKING_DIR,
+ llm_model_func=llm_model_func,
+ embedding_func=EmbeddingFunc(
+ embedding_dim=3072, max_token_size=8192, func=embedding_func
+ ),
+)
+
+# Data models
+
+
+class QueryRequest(BaseModel):
+ query: str
+ mode: str = "hybrid"
+
+
+class InsertRequest(BaseModel):
+ text: str
+
+
+class InsertFileRequest(BaseModel):
+ file_path: str
+
+
+class Response(BaseModel):
+ status: str
+ data: Optional[str] = None
+ message: Optional[str] = None
+
+
+# API routes
+
+
+@app.post("/query", response_model=Response)
+async def query_endpoint(request: QueryRequest):
+ try:
+ loop = asyncio.get_event_loop()
+ result = await loop.run_in_executor(
+ None, lambda: rag.query(request.query, param=QueryParam(mode=request.mode))
+ )
+ return Response(status="success", data=result)
+ except Exception as e:
+ raise HTTPException(status_code=500, detail=str(e))
+
+
+@app.post("/insert", response_model=Response)
+async def insert_endpoint(request: InsertRequest):
+ try:
+ loop = asyncio.get_event_loop()
+ await loop.run_in_executor(None, lambda: rag.insert(request.text))
+ return Response(status="success", message="Text inserted successfully")
+ except Exception as e:
+ raise HTTPException(status_code=500, detail=str(e))
+
+
+@app.post("/insert_file", response_model=Response)
+async def insert_file(request: InsertFileRequest):
+ try:
+ # Check if file exists
+ if not os.path.exists(request.file_path):
+ raise HTTPException(
+ status_code=404, detail=f"File not found: {request.file_path}"
+ )
+
+ # Read file content
+ try:
+ with open(request.file_path, "r", encoding="utf-8") as f:
+ content = f.read()
+ except UnicodeDecodeError:
+ # If UTF-8 decoding fails, try other encodings
+ with open(request.file_path, "r", encoding="gbk") as f:
+ content = f.read()
+
+ # Insert file content
+ loop = asyncio.get_event_loop()
+ await loop.run_in_executor(None, lambda: rag.insert(content))
+
+ return Response(
+ status="success",
+ message=f"File content from {request.file_path} inserted successfully",
+ )
+ except Exception as e:
+ raise HTTPException(status_code=500, detail=str(e))
+
+
+@app.get("/health")
+async def health_check():
+ return {"status": "healthy"}
+
+
+if __name__ == "__main__":
+ import uvicorn
+
+ uvicorn.run(app, host="0.0.0.0", port=8020)
+
+# Usage example
+# To run the server, use the following command in your terminal:
+# python lightrag_api_openai_compatible_demo.py
+
+# Example requests:
+# 1. Query:
+# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
+
+# 2. Insert text:
+# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
+
+# 3. Insert file:
+# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
+
+# 4. Health check:
+# curl -X GET "http://127.0.0.1:8020/health"
diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py
index 3004f5ed..b84e22ef 100644
--- a/lightrag/lightrag.py
+++ b/lightrag/lightrag.py
@@ -85,9 +85,7 @@ class LightRAG:
# LLM
llm_model_func: callable = gpt_4o_mini_complete # hf_model_complete#
- llm_model_name: str = (
- "meta-llama/Llama-3.2-1B-Instruct" #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
- )
+ llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" #'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
llm_model_max_token_size: int = 32768
llm_model_max_async: int = 16
diff --git a/setup.py b/setup.py
index bdf49f02..1b1f65f0 100644
--- a/setup.py
+++ b/setup.py
@@ -1,6 +1,7 @@
import setuptools
from pathlib import Path
+
# Reading the long description from README.md
def read_long_description():
try:
@@ -8,6 +9,7 @@ def read_long_description():
except FileNotFoundError:
return "A description of LightRAG is currently unavailable."
+
# Retrieving metadata from __init__.py
def retrieve_metadata():
vars2find = ["__author__", "__version__", "__url__"]
@@ -17,18 +19,26 @@ def retrieve_metadata():
for line in f.readlines():
for v in vars2find:
if line.startswith(v):
- line = line.replace(" ", "").replace('"', "").replace("'", "").strip()
+ line = (
+ line.replace(" ", "")
+ .replace('"', "")
+ .replace("'", "")
+ .strip()
+ )
vars2readme[v] = line.split("=")[1]
except FileNotFoundError:
raise FileNotFoundError("Metadata file './lightrag/__init__.py' not found.")
-
+
# Checking if all required variables are found
missing_vars = [v for v in vars2find if v not in vars2readme]
if missing_vars:
- raise ValueError(f"Missing required metadata variables in __init__.py: {missing_vars}")
-
+ raise ValueError(
+ f"Missing required metadata variables in __init__.py: {missing_vars}"
+ )
+
return vars2readme
+
# Reading dependencies from requirements.txt
def read_requirements():
deps = []
@@ -36,9 +46,12 @@ def read_requirements():
with open("./requirements.txt") as f:
deps = [line.strip() for line in f if line.strip()]
except FileNotFoundError:
- print("Warning: 'requirements.txt' not found. No dependencies will be installed.")
+ print(
+ "Warning: 'requirements.txt' not found. No dependencies will be installed."
+ )
return deps
+
metadata = retrieve_metadata()
long_description = read_long_description()
requirements = read_requirements()
@@ -51,7 +64,9 @@ setuptools.setup(
description="LightRAG: Simple and Fast Retrieval-Augmented Generation",
long_description=long_description,
long_description_content_type="text/markdown",
- packages=setuptools.find_packages(exclude=("tests*", "docs*")), # Automatically find packages
+ packages=setuptools.find_packages(
+ exclude=("tests*", "docs*")
+ ), # Automatically find packages
classifiers=[
"Development Status :: 4 - Beta",
"Programming Language :: Python :: 3",
@@ -66,6 +81,8 @@ setuptools.setup(
project_urls={ # Additional project metadata
"Documentation": metadata.get("__url__", ""),
"Source": metadata.get("__url__", ""),
- "Tracker": f"{metadata.get('__url__', '')}/issues" if metadata.get("__url__") else ""
+ "Tracker": f"{metadata.get('__url__', '')}/issues"
+ if metadata.get("__url__")
+ else "",
},
)