Added lollms integration with lightrag
Removed a depricated function from ollamaserver
This commit is contained in:
177
api/README_LOLLMS.md
Normal file
177
api/README_LOLLMS.md
Normal file
@@ -0,0 +1,177 @@
|
||||
# LightRAG API Server
|
||||
|
||||
A powerful FastAPI-based server for managing and querying documents using LightRAG (Light Retrieval-Augmented Generation). This server provides a REST API interface for document management and intelligent querying using various LLM models through LoLLMS.
|
||||
|
||||
## Features
|
||||
|
||||
- 🔍 Multiple search modes (naive, local, global, hybrid)
|
||||
- 📡 Streaming and non-streaming responses
|
||||
- 📝 Document management (insert, batch upload, clear)
|
||||
- ⚙️ Highly configurable model parameters
|
||||
- 📚 Support for text and file uploads
|
||||
- 🔧 RESTful API with automatic documentation
|
||||
- 🚀 Built with FastAPI for high performance
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Python 3.8+
|
||||
- LoLLMS server running locally or remotely
|
||||
- Required Python packages:
|
||||
- fastapi
|
||||
- uvicorn
|
||||
- lightrag
|
||||
- pydantic
|
||||
|
||||
## Installation
|
||||
If you are using windows, you will need to donwload and install visual c++ build tools from [https://visualstudio.microsoft.com/visual-cpp-build-tools/ ](https://visualstudio.microsoft.com/visual-cpp-build-tools/)
|
||||
Make sure you install the VS 2022 C++ x64/x86 Build tools like from indivisual componants tab:
|
||||

|
||||
|
||||
This is mandatory for builmding some modules.
|
||||
|
||||
1. Clone the repository:
|
||||
```bash
|
||||
git clone https://github.com/ParisNeo/LightRAG.git
|
||||
cd api
|
||||
```
|
||||
|
||||
2. Install dependencies:
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
3. Make sure LoLLMS is running and accessible.
|
||||
|
||||
## Configuration
|
||||
|
||||
The server can be configured using command-line arguments:
|
||||
|
||||
```bash
|
||||
python ollama_lightollama_lightrag_server.py --help
|
||||
```
|
||||
|
||||
Available options:
|
||||
|
||||
| Parameter | Default | Description |
|
||||
|-----------|---------|-------------|
|
||||
| --host | 0.0.0.0 | Server host |
|
||||
| --port | 9621 | Server port |
|
||||
| --model | mistral-nemo:latest | LLM model name |
|
||||
| --embedding-model | bge-m3:latest | Embedding model name |
|
||||
| --lollms-host | http://localhost:11434 | LoLLMS host URL |
|
||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||
| --max-async | 4 | Maximum async operations |
|
||||
| --max-tokens | 32768 | Maximum token size |
|
||||
| --embedding-dim | 1024 | Embedding dimensions |
|
||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||
| --input-file | ./book.txt | Initial input file |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
## Quick Start
|
||||
|
||||
1. Basic usage with default settings:
|
||||
```bash
|
||||
python ollama_lightrag_server.py
|
||||
```
|
||||
|
||||
2. Custom configuration:
|
||||
```bash
|
||||
python ollama_lightrag_server.py --model llama2:13b --port 8080 --working-dir ./custom_rag
|
||||
```
|
||||
|
||||
Make sure the models are installed in your lollms instance
|
||||
```bash
|
||||
python ollama_lightrag_server.py --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
|
||||
```
|
||||
|
||||
## API Endpoints
|
||||
|
||||
### Query Endpoints
|
||||
|
||||
#### POST /query
|
||||
Query the RAG system with options for different search modes.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
#### POST /query/stream
|
||||
Stream responses from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query/stream" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
### Document Management Endpoints
|
||||
|
||||
#### POST /documents/text
|
||||
Insert text directly into the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/text" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"text": "Your text content here", "description": "Optional description"}'
|
||||
```
|
||||
|
||||
#### POST /documents/file
|
||||
Upload a single file to the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/file" \
|
||||
-F "file=@/path/to/your/document.txt" \
|
||||
-F "description=Optional description"
|
||||
```
|
||||
|
||||
#### POST /documents/batch
|
||||
Upload multiple files at once.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/batch" \
|
||||
-F "files=@/path/to/doc1.txt" \
|
||||
-F "files=@/path/to/doc2.txt"
|
||||
```
|
||||
|
||||
#### DELETE /documents
|
||||
Clear all documents from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X DELETE "http://localhost:9621/documents"
|
||||
```
|
||||
|
||||
### Utility Endpoints
|
||||
|
||||
#### GET /health
|
||||
Check server health and configuration.
|
||||
|
||||
```bash
|
||||
curl "http://localhost:9621/health"
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
### Running in Development Mode
|
||||
|
||||
```bash
|
||||
uvicorn ollama_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
|
||||
### API Documentation
|
||||
|
||||
When the server is running, visit:
|
||||
- Swagger UI: http://localhost:9621/docs
|
||||
- ReDoc: http://localhost:9621/redoc
|
||||
|
||||
|
||||
## License
|
||||
|
||||
This project is licensed under the MIT License - see the LICENSE file for details.
|
||||
|
||||
## Acknowledgments
|
||||
|
||||
- Built with [FastAPI](https://fastapi.tiangolo.com/)
|
||||
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing
|
||||
- Powered by [LoLLMS](https://lollms.ai/) for LLM inference
|
Reference in New Issue
Block a user