Merge branch 'main' into before-sync-28-10-2024
This commit is contained in:
@@ -3,17 +3,17 @@ from pyvis.network import Network
|
||||
import random
|
||||
|
||||
# Load the GraphML file
|
||||
G = nx.read_graphml('./dickens/graph_chunk_entity_relation.graphml')
|
||||
G = nx.read_graphml("./dickens/graph_chunk_entity_relation.graphml")
|
||||
|
||||
# Create a Pyvis network
|
||||
net = Network(notebook=True)
|
||||
net = Network(height="100vh", notebook=True)
|
||||
|
||||
# Convert NetworkX graph to Pyvis network
|
||||
net.from_nx(G)
|
||||
|
||||
# Add colors to nodes
|
||||
for node in net.nodes:
|
||||
node['color'] = "#{:06x}".format(random.randint(0, 0xFFFFFF))
|
||||
node["color"] = "#{:06x}".format(random.randint(0, 0xFFFFFF))
|
||||
|
||||
# Save and display the network
|
||||
net.show('knowledge_graph.html')
|
||||
net.show("knowledge_graph.html")
|
||||
|
@@ -13,6 +13,7 @@ NEO4J_URI = "bolt://localhost:7687"
|
||||
NEO4J_USERNAME = "neo4j"
|
||||
NEO4J_PASSWORD = "your_password"
|
||||
|
||||
|
||||
def convert_xml_to_json(xml_path, output_path):
|
||||
"""Converts XML file to JSON and saves the output."""
|
||||
if not os.path.exists(xml_path):
|
||||
@@ -21,7 +22,7 @@ def convert_xml_to_json(xml_path, output_path):
|
||||
|
||||
json_data = xml_to_json(xml_path)
|
||||
if json_data:
|
||||
with open(output_path, 'w', encoding='utf-8') as f:
|
||||
with open(output_path, "w", encoding="utf-8") as f:
|
||||
json.dump(json_data, f, ensure_ascii=False, indent=2)
|
||||
print(f"JSON file created: {output_path}")
|
||||
return json_data
|
||||
@@ -29,16 +30,18 @@ def convert_xml_to_json(xml_path, output_path):
|
||||
print("Failed to create JSON data")
|
||||
return None
|
||||
|
||||
|
||||
def process_in_batches(tx, query, data, batch_size):
|
||||
"""Process data in batches and execute the given query."""
|
||||
for i in range(0, len(data), batch_size):
|
||||
batch = data[i:i + batch_size]
|
||||
batch = data[i : i + batch_size]
|
||||
tx.run(query, {"nodes": batch} if "nodes" in query else {"edges": batch})
|
||||
|
||||
|
||||
def main():
|
||||
# Paths
|
||||
xml_file = os.path.join(WORKING_DIR, 'graph_chunk_entity_relation.graphml')
|
||||
json_file = os.path.join(WORKING_DIR, 'graph_data.json')
|
||||
xml_file = os.path.join(WORKING_DIR, "graph_chunk_entity_relation.graphml")
|
||||
json_file = os.path.join(WORKING_DIR, "graph_data.json")
|
||||
|
||||
# Convert XML to JSON
|
||||
json_data = convert_xml_to_json(xml_file, json_file)
|
||||
@@ -46,8 +49,8 @@ def main():
|
||||
return
|
||||
|
||||
# Load nodes and edges
|
||||
nodes = json_data.get('nodes', [])
|
||||
edges = json_data.get('edges', [])
|
||||
nodes = json_data.get("nodes", [])
|
||||
edges = json_data.get("edges", [])
|
||||
|
||||
# Neo4j queries
|
||||
create_nodes_query = """
|
||||
@@ -56,8 +59,8 @@ def main():
|
||||
SET e.entity_type = node.entity_type,
|
||||
e.description = node.description,
|
||||
e.source_id = node.source_id,
|
||||
e.displayName = node.id
|
||||
REMOVE e:Entity
|
||||
e.displayName = node.id
|
||||
REMOVE e:Entity
|
||||
WITH e, node
|
||||
CALL apoc.create.addLabels(e, [node.entity_type]) YIELD node AS labeledNode
|
||||
RETURN count(*)
|
||||
@@ -100,19 +103,24 @@ def main():
|
||||
# Execute queries in batches
|
||||
with driver.session() as session:
|
||||
# Insert nodes in batches
|
||||
session.execute_write(process_in_batches, create_nodes_query, nodes, BATCH_SIZE_NODES)
|
||||
session.execute_write(
|
||||
process_in_batches, create_nodes_query, nodes, BATCH_SIZE_NODES
|
||||
)
|
||||
|
||||
# Insert edges in batches
|
||||
session.execute_write(process_in_batches, create_edges_query, edges, BATCH_SIZE_EDGES)
|
||||
session.execute_write(
|
||||
process_in_batches, create_edges_query, edges, BATCH_SIZE_EDGES
|
||||
)
|
||||
|
||||
# Set displayName and labels
|
||||
session.run(set_displayname_and_labels_query)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error occurred: {e}")
|
||||
|
||||
|
||||
finally:
|
||||
driver.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
164
examples/lightrag_api_openai_compatible_demo.py
Normal file
164
examples/lightrag_api_openai_compatible_demo.py
Normal file
@@ -0,0 +1,164 @@
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from pydantic import BaseModel
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
from typing import Optional
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
DEFAULT_RAG_DIR = "index_default"
|
||||
app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
||||
|
||||
# Configure working directory
|
||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
# LLM model function
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
"gpt-4o-mini",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key="YOUR_API_KEY",
|
||||
base_url="YourURL/v1",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
# Embedding function
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model="text-embedding-3-large",
|
||||
api_key="YOUR_API_KEY",
|
||||
base_url="YourURL/v1",
|
||||
)
|
||||
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=3072, max_token_size=8192, func=embedding_func
|
||||
),
|
||||
)
|
||||
|
||||
# Data models
|
||||
|
||||
|
||||
class QueryRequest(BaseModel):
|
||||
query: str
|
||||
mode: str = "hybrid"
|
||||
|
||||
|
||||
class InsertRequest(BaseModel):
|
||||
text: str
|
||||
|
||||
|
||||
class InsertFileRequest(BaseModel):
|
||||
file_path: str
|
||||
|
||||
|
||||
class Response(BaseModel):
|
||||
status: str
|
||||
data: Optional[str] = None
|
||||
message: Optional[str] = None
|
||||
|
||||
|
||||
# API routes
|
||||
|
||||
|
||||
@app.post("/query", response_model=Response)
|
||||
async def query_endpoint(request: QueryRequest):
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
result = await loop.run_in_executor(
|
||||
None, lambda: rag.query(request.query, param=QueryParam(mode=request.mode))
|
||||
)
|
||||
return Response(status="success", data=result)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@app.post("/insert", response_model=Response)
|
||||
async def insert_endpoint(request: InsertRequest):
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
await loop.run_in_executor(None, lambda: rag.insert(request.text))
|
||||
return Response(status="success", message="Text inserted successfully")
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@app.post("/insert_file", response_model=Response)
|
||||
async def insert_file(request: InsertFileRequest):
|
||||
try:
|
||||
# Check if file exists
|
||||
if not os.path.exists(request.file_path):
|
||||
raise HTTPException(
|
||||
status_code=404, detail=f"File not found: {request.file_path}"
|
||||
)
|
||||
|
||||
# Read file content
|
||||
try:
|
||||
with open(request.file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
except UnicodeDecodeError:
|
||||
# If UTF-8 decoding fails, try other encodings
|
||||
with open(request.file_path, "r", encoding="gbk") as f:
|
||||
content = f.read()
|
||||
|
||||
# Insert file content
|
||||
loop = asyncio.get_event_loop()
|
||||
await loop.run_in_executor(None, lambda: rag.insert(content))
|
||||
|
||||
return Response(
|
||||
status="success",
|
||||
message=f"File content from {request.file_path} inserted successfully",
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
|
||||
@app.get("/health")
|
||||
async def health_check():
|
||||
return {"status": "healthy"}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
|
||||
uvicorn.run(app, host="0.0.0.0", port=8020)
|
||||
|
||||
# Usage example
|
||||
# To run the server, use the following command in your terminal:
|
||||
# python lightrag_api_openai_compatible_demo.py
|
||||
|
||||
# Example requests:
|
||||
# 1. Query:
|
||||
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
|
||||
|
||||
# 2. Insert text:
|
||||
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
|
||||
|
||||
# 3. Insert file:
|
||||
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
|
||||
|
||||
# 4. Health check:
|
||||
# curl -X GET "http://127.0.0.1:8020/health"
|
@@ -30,7 +30,7 @@ rag = LightRAG(
|
||||
)
|
||||
|
||||
|
||||
with open("./book.txt") as f:
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
|
75
examples/lightrag_lmdeploy_demo.py
Normal file
75
examples/lightrag_lmdeploy_demo.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import lmdeploy_model_if_cache, hf_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
async def lmdeploy_model_complete(
|
||||
prompt=None, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
return await lmdeploy_model_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
## please specify chat_template if your local path does not follow original HF file name,
|
||||
## or model_name is a pytorch model on huggingface.co,
|
||||
## you can refer to https://github.com/InternLM/lmdeploy/blob/main/lmdeploy/model.py
|
||||
## for a list of chat_template available in lmdeploy.
|
||||
chat_template="llama3",
|
||||
# model_format ='awq', # if you are using awq quantization model.
|
||||
# quant_policy=8, # if you want to use online kv cache, 4=kv int4, 8=kv int8.
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=lmdeploy_model_complete,
|
||||
llm_model_name="meta-llama/Llama-3.1-8B-Instruct", # please use definite path for local model
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=5000,
|
||||
func=lambda texts: hf_embedding(
|
||||
texts,
|
||||
tokenizer=AutoTokenizer.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
),
|
||||
embed_model=AutoModel.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
),
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
@@ -28,7 +28,7 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
with open("./book.txt") as f:
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
|
@@ -34,6 +34,13 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
)
|
||||
|
||||
|
||||
async def get_embedding_dim():
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await embedding_func(test_text)
|
||||
embedding_dim = embedding.shape[1]
|
||||
return embedding_dim
|
||||
|
||||
|
||||
# function test
|
||||
async def test_funcs():
|
||||
result = await llm_model_func("How are you?")
|
||||
@@ -43,37 +50,59 @@ async def test_funcs():
|
||||
print("embedding_func: ", result)
|
||||
|
||||
|
||||
asyncio.run(test_funcs())
|
||||
# asyncio.run(test_funcs())
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=4096, max_token_size=8192, func=embedding_func
|
||||
),
|
||||
)
|
||||
async def main():
|
||||
try:
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
print(f"Detected embedding dimension: {embedding_dimension}")
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
)
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||
)
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="global"),
|
||||
)
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid"),
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
|
||||
|
||||
with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
|
@@ -15,7 +15,7 @@ rag = LightRAG(
|
||||
)
|
||||
|
||||
|
||||
with open("./book.txt") as f:
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
|
79
examples/lightrag_siliconcloud_demo.py
Normal file
79
examples/lightrag_siliconcloud_demo.py
Normal file
@@ -0,0 +1,79 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, siliconcloud_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
"Qwen/Qwen2.5-7B-Instruct",
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
api_key=os.getenv("SILICONFLOW_API_KEY"),
|
||||
base_url="https://api.siliconflow.cn/v1/",
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await siliconcloud_embedding(
|
||||
texts,
|
||||
model="netease-youdao/bce-embedding-base_v1",
|
||||
api_key=os.getenv("SILICONFLOW_API_KEY"),
|
||||
max_token_size=512,
|
||||
)
|
||||
|
||||
|
||||
# function test
|
||||
async def test_funcs():
|
||||
result = await llm_model_func("How are you?")
|
||||
print("llm_model_func: ", result)
|
||||
|
||||
result = await embedding_func(["How are you?"])
|
||||
print("embedding_func: ", result)
|
||||
|
||||
|
||||
asyncio.run(test_funcs())
|
||||
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768, max_token_size=512, func=embedding_func
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
@@ -27,11 +27,12 @@ rag = LightRAG(
|
||||
# Read all .txt files from the TEXT_FILES_DIR directory
|
||||
texts = []
|
||||
for filename in os.listdir(TEXT_FILES_DIR):
|
||||
if filename.endswith('.txt'):
|
||||
if filename.endswith(".txt"):
|
||||
file_path = os.path.join(TEXT_FILES_DIR, filename)
|
||||
with open(file_path, 'r', encoding='utf-8') as file:
|
||||
with open(file_path, "r", encoding="utf-8") as file:
|
||||
texts.append(file.read())
|
||||
|
||||
|
||||
# Batch insert texts into LightRAG with a retry mechanism
|
||||
def insert_texts_with_retry(rag, texts, retries=3, delay=5):
|
||||
for _ in range(retries):
|
||||
@@ -39,37 +40,58 @@ def insert_texts_with_retry(rag, texts, retries=3, delay=5):
|
||||
rag.insert(texts)
|
||||
return
|
||||
except Exception as e:
|
||||
print(f"Error occurred during insertion: {e}. Retrying in {delay} seconds...")
|
||||
print(
|
||||
f"Error occurred during insertion: {e}. Retrying in {delay} seconds..."
|
||||
)
|
||||
time.sleep(delay)
|
||||
raise RuntimeError("Failed to insert texts after multiple retries.")
|
||||
|
||||
|
||||
insert_texts_with_retry(rag, texts)
|
||||
|
||||
# Perform different types of queries and handle potential errors
|
||||
try:
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error performing naive search: {e}")
|
||||
|
||||
try:
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error performing local search: {e}")
|
||||
|
||||
try:
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="global")
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error performing global search: {e}")
|
||||
|
||||
try:
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error performing hybrid search: {e}")
|
||||
|
||||
|
||||
# Function to clear VRAM resources
|
||||
def clear_vram():
|
||||
os.system("sudo nvidia-smi --gpu-reset")
|
||||
|
||||
|
||||
# Regularly clear VRAM to prevent overflow
|
||||
clear_vram_interval = 3600 # Clear once every hour
|
||||
start_time = time.time()
|
||||
|
Reference in New Issue
Block a user