Merge branch 'HKUDS:main' into main

This commit is contained in:
ArindamRoy23
2025-03-11 20:53:00 +05:30
committed by GitHub
46 changed files with 2595 additions and 923 deletions

View File

@@ -1,5 +1,5 @@
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
__version__ = "1.2.4"
__version__ = "1.2.5"
__author__ = "Zirui Guo"
__url__ = "https://github.com/HKUDS/LightRAG"

View File

@@ -50,9 +50,6 @@ from .auth import auth_handler
# This update allows the user to put a different.env file for each lightrag folder
load_dotenv(".env", override=True)
# Read entity extraction cache config
enable_llm_cache = os.getenv("ENABLE_LLM_CACHE_FOR_EXTRACT", "false").lower() == "true"
# Initialize config parser
config = configparser.ConfigParser()
config.read("config.ini")
@@ -144,23 +141,25 @@ def create_app(args):
try:
# Initialize database connections
await rag.initialize_storages()
await initialize_pipeline_status()
await initialize_pipeline_status()
pipeline_status = await get_namespace_data("pipeline_status")
should_start_autoscan = False
async with get_pipeline_status_lock():
# Auto scan documents if enabled
if args.auto_scan_at_startup:
# Check if a task is already running (with lock protection)
pipeline_status = await get_namespace_data("pipeline_status")
should_start_task = False
async with get_pipeline_status_lock():
if not pipeline_status.get("busy", False):
should_start_task = True
# Only start the task if no other task is running
if should_start_task:
if not pipeline_status.get("autoscanned", False):
pipeline_status["autoscanned"] = True
should_start_autoscan = True
# Only run auto scan when no other process started it first
if should_start_autoscan:
# Create background task
task = asyncio.create_task(run_scanning_process(rag, doc_manager))
app.state.background_tasks.add(task)
task.add_done_callback(app.state.background_tasks.discard)
logger.info("Auto scan task started at startup.")
logger.info(f"Process {os.getpid()} auto scan task started at startup.")
ASCIIColors.green("\nServer is ready to accept connections! 🚀\n")
@@ -326,7 +325,7 @@ def create_app(args):
vector_db_storage_cls_kwargs={
"cosine_better_than_threshold": args.cosine_threshold
},
enable_llm_cache_for_entity_extract=enable_llm_cache, # Read from environment variable
enable_llm_cache_for_entity_extract=args.enable_llm_cache_for_extract,
embedding_cache_config={
"enabled": True,
"similarity_threshold": 0.95,
@@ -355,7 +354,7 @@ def create_app(args):
vector_db_storage_cls_kwargs={
"cosine_better_than_threshold": args.cosine_threshold
},
enable_llm_cache_for_entity_extract=enable_llm_cache, # Read from environment variable
enable_llm_cache_for_entity_extract=args.enable_llm_cache_for_extract,
embedding_cache_config={
"enabled": True,
"similarity_threshold": 0.95,
@@ -419,6 +418,7 @@ def create_app(args):
"doc_status_storage": args.doc_status_storage,
"graph_storage": args.graph_storage,
"vector_storage": args.vector_storage,
"enable_llm_cache_for_extract": args.enable_llm_cache_for_extract,
},
"update_status": update_status,
}

View File

@@ -16,7 +16,11 @@ from pydantic import BaseModel, Field, field_validator
from lightrag import LightRAG
from lightrag.base import DocProcessingStatus, DocStatus
from ..utils_api import get_api_key_dependency, get_auth_dependency
from lightrag.api.utils_api import (
get_api_key_dependency,
global_args,
get_auth_dependency,
)
router = APIRouter(
prefix="/documents",
@@ -240,6 +244,15 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
)
return False
case ".pdf":
if global_args["main_args"].document_loading_engine == "DOCLING":
if not pm.is_installed("docling"): # type: ignore
pm.install("docling")
from docling.document_converter import DocumentConverter
converter = DocumentConverter()
result = converter.convert(file_path)
content = result.document.export_to_markdown()
else:
if not pm.is_installed("pypdf2"): # type: ignore
pm.install("pypdf2")
from PyPDF2 import PdfReader # type: ignore
@@ -250,6 +263,15 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
for page in reader.pages:
content += page.extract_text() + "\n"
case ".docx":
if global_args["main_args"].document_loading_engine == "DOCLING":
if not pm.is_installed("docling"): # type: ignore
pm.install("docling")
from docling.document_converter import DocumentConverter
converter = DocumentConverter()
result = converter.convert(file_path)
content = result.document.export_to_markdown()
else:
if not pm.is_installed("python-docx"): # type: ignore
pm.install("docx")
from docx import Document # type: ignore
@@ -257,8 +279,19 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
docx_file = BytesIO(file)
doc = Document(docx_file)
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
content = "\n".join(
[paragraph.text for paragraph in doc.paragraphs]
)
case ".pptx":
if global_args["main_args"].document_loading_engine == "DOCLING":
if not pm.is_installed("docling"): # type: ignore
pm.install("docling")
from docling.document_converter import DocumentConverter
converter = DocumentConverter()
result = converter.convert(file_path)
content = result.document.export_to_markdown()
else:
if not pm.is_installed("python-pptx"): # type: ignore
pm.install("pptx")
from pptx import Presentation # type: ignore
@@ -271,6 +304,15 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
if hasattr(shape, "text"):
content += shape.text + "\n"
case ".xlsx":
if global_args["main_args"].document_loading_engine == "DOCLING":
if not pm.is_installed("docling"): # type: ignore
pm.install("docling")
from docling.document_converter import DocumentConverter
converter = DocumentConverter()
result = converter.convert(file_path)
content = result.document.export_to_markdown()
else:
if not pm.is_installed("openpyxl"): # type: ignore
pm.install("openpyxl")
from openpyxl import load_workbook # type: ignore
@@ -283,7 +325,8 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
for row in sheet.iter_rows(values_only=True):
content += (
"\t".join(
str(cell) if cell is not None else "" for cell in row
str(cell) if cell is not None else ""
for cell in row
)
+ "\n"
)

View File

@@ -11,7 +11,7 @@ import asyncio
from ascii_colors import trace_exception
from lightrag import LightRAG, QueryParam
from lightrag.utils import encode_string_by_tiktoken
from ..utils_api import ollama_server_infos
from lightrag.api.utils_api import ollama_server_infos
# query mode according to query prefix (bypass is not LightRAG quer mode)

View File

@@ -18,6 +18,8 @@ from .auth import auth_handler
# Load environment variables
load_dotenv(override=True)
global_args = {"main_args": None}
class OllamaServerInfos:
# Constants for emulated Ollama model information
@@ -360,8 +362,17 @@ def parse_args(is_uvicorn_mode: bool = False) -> argparse.Namespace:
args.chunk_size = get_env_value("CHUNK_SIZE", 1200, int)
args.chunk_overlap_size = get_env_value("CHUNK_OVERLAP_SIZE", 100, int)
# Inject LLM cache configuration
args.enable_llm_cache_for_extract = get_env_value(
"ENABLE_LLM_CACHE_FOR_EXTRACT", False, bool
)
# Select Document loading tool (DOCLING, DEFAULT)
args.document_loading_engine = get_env_value("DOCUMENT_LOADING_ENGINE", "DEFAULT")
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
global_args["main_args"] = args
return args
@@ -451,8 +462,10 @@ def display_splash_screen(args: argparse.Namespace) -> None:
ASCIIColors.yellow(f"{args.history_turns}")
ASCIIColors.white(" ├─ Cosine Threshold: ", end="")
ASCIIColors.yellow(f"{args.cosine_threshold}")
ASCIIColors.white(" ─ Top-K: ", end="")
ASCIIColors.white(" ─ Top-K: ", end="")
ASCIIColors.yellow(f"{args.top_k}")
ASCIIColors.white(" └─ LLM Cache for Extraction Enabled: ", end="")
ASCIIColors.yellow(f"{args.enable_llm_cache_for_extract}")
# System Configuration
ASCIIColors.magenta("\n💾 Storage Configuration:")

View File

@@ -127,6 +127,30 @@ class BaseVectorStorage(StorageNameSpace, ABC):
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete relations for a given entity."""
@abstractmethod
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
pass
@abstractmethod
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
pass
@dataclass
class BaseKVStorage(StorageNameSpace, ABC):

View File

@@ -271,3 +271,67 @@ class ChromaVectorDBStorage(BaseVectorStorage):
except Exception as e:
logger.error(f"Error during prefix search in ChromaDB: {str(e)}")
raise
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
try:
# Query the collection for a single vector by ID
result = self._collection.get(
ids=[id], include=["metadatas", "embeddings", "documents"]
)
if not result or not result["ids"] or len(result["ids"]) == 0:
return None
# Format the result to match the expected structure
return {
"id": result["ids"][0],
"vector": result["embeddings"][0],
"content": result["documents"][0],
**result["metadatas"][0],
}
except Exception as e:
logger.error(f"Error retrieving vector data for ID {id}: {e}")
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
try:
# Query the collection for multiple vectors by IDs
result = self._collection.get(
ids=ids, include=["metadatas", "embeddings", "documents"]
)
if not result or not result["ids"] or len(result["ids"]) == 0:
return []
# Format the results to match the expected structure
return [
{
"id": result["ids"][i],
"vector": result["embeddings"][i],
"content": result["documents"][i],
**result["metadatas"][i],
}
for i in range(len(result["ids"]))
]
except Exception as e:
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
return []

View File

@@ -394,3 +394,46 @@ class FaissVectorDBStorage(BaseVectorStorage):
logger.debug(f"Found {len(matching_records)} records with prefix '{prefix}'")
return matching_records
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
# Find the Faiss internal ID for the custom ID
fid = self._find_faiss_id_by_custom_id(id)
if fid is None:
return None
# Get the metadata for the found ID
metadata = self._id_to_meta.get(fid, {})
if not metadata:
return None
return {**metadata, "id": metadata.get("__id__")}
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
results = []
for id in ids:
fid = self._find_faiss_id_by_custom_id(id)
if fid is not None:
metadata = self._id_to_meta.get(fid, {})
if metadata:
results.append({**metadata, "id": metadata.get("__id__")})
return results

View File

@@ -15,6 +15,10 @@ from lightrag.utils import (
from .shared_storage import (
get_namespace_data,
get_storage_lock,
get_data_init_lock,
get_update_flag,
set_all_update_flags,
clear_all_update_flags,
try_initialize_namespace,
)
@@ -27,20 +31,24 @@ class JsonDocStatusStorage(DocStatusStorage):
def __post_init__(self):
working_dir = self.global_config["working_dir"]
self._file_name = os.path.join(working_dir, f"kv_store_{self.namespace}.json")
self._storage_lock = get_storage_lock()
self._data = None
self._storage_lock = None
self.storage_updated = None
async def initialize(self):
"""Initialize storage data"""
self._storage_lock = get_storage_lock()
self.storage_updated = await get_update_flag(self.namespace)
async with get_data_init_lock():
# check need_init must before get_namespace_data
need_init = try_initialize_namespace(self.namespace)
need_init = await try_initialize_namespace(self.namespace)
self._data = await get_namespace_data(self.namespace)
if need_init:
loaded_data = load_json(self._file_name) or {}
async with self._storage_lock:
self._data.update(loaded_data)
logger.info(
f"Loaded document status storage with {len(loaded_data)} records"
f"Process {os.getpid()} doc status load {self.namespace} with {len(loaded_data)} records"
)
async def filter_keys(self, keys: set[str]) -> set[str]:
@@ -87,18 +95,24 @@ class JsonDocStatusStorage(DocStatusStorage):
async def index_done_callback(self) -> None:
async with self._storage_lock:
if self.storage_updated.value:
data_dict = (
dict(self._data) if hasattr(self._data, "_getvalue") else self._data
)
logger.info(
f"Process {os.getpid()} doc status writting {len(data_dict)} records to {self.namespace}"
)
write_json(data_dict, self._file_name)
await clear_all_update_flags(self.namespace)
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
logger.info(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
logger.info(f"Inserting {len(data)} records to {self.namespace}")
async with self._storage_lock:
self._data.update(data)
await set_all_update_flags(self.namespace)
await self.index_done_callback()
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
@@ -109,9 +123,12 @@ class JsonDocStatusStorage(DocStatusStorage):
async with self._storage_lock:
for doc_id in doc_ids:
self._data.pop(doc_id, None)
await set_all_update_flags(self.namespace)
await self.index_done_callback()
async def drop(self) -> None:
"""Drop the storage"""
async with self._storage_lock:
self._data.clear()
await set_all_update_flags(self.namespace)
await self.index_done_callback()

View File

@@ -13,6 +13,10 @@ from lightrag.utils import (
from .shared_storage import (
get_namespace_data,
get_storage_lock,
get_data_init_lock,
get_update_flag,
set_all_update_flags,
clear_all_update_flags,
try_initialize_namespace,
)
@@ -23,26 +27,63 @@ class JsonKVStorage(BaseKVStorage):
def __post_init__(self):
working_dir = self.global_config["working_dir"]
self._file_name = os.path.join(working_dir, f"kv_store_{self.namespace}.json")
self._storage_lock = get_storage_lock()
self._data = None
self._storage_lock = None
self.storage_updated = None
async def initialize(self):
"""Initialize storage data"""
self._storage_lock = get_storage_lock()
self.storage_updated = await get_update_flag(self.namespace)
async with get_data_init_lock():
# check need_init must before get_namespace_data
need_init = try_initialize_namespace(self.namespace)
need_init = await try_initialize_namespace(self.namespace)
self._data = await get_namespace_data(self.namespace)
if need_init:
loaded_data = load_json(self._file_name) or {}
async with self._storage_lock:
self._data.update(loaded_data)
logger.info(f"Load KV {self.namespace} with {len(loaded_data)} data")
# Calculate data count based on namespace
if self.namespace.endswith("cache"):
# For cache namespaces, sum the cache entries across all cache types
data_count = sum(
len(first_level_dict)
for first_level_dict in loaded_data.values()
if isinstance(first_level_dict, dict)
)
else:
# For non-cache namespaces, use the original count method
data_count = len(loaded_data)
logger.info(
f"Process {os.getpid()} KV load {self.namespace} with {data_count} records"
)
async def index_done_callback(self) -> None:
async with self._storage_lock:
if self.storage_updated.value:
data_dict = (
dict(self._data) if hasattr(self._data, "_getvalue") else self._data
)
# Calculate data count based on namespace
if self.namespace.endswith("cache"):
# # For cache namespaces, sum the cache entries across all cache types
data_count = sum(
len(first_level_dict)
for first_level_dict in data_dict.values()
if isinstance(first_level_dict, dict)
)
else:
# For non-cache namespaces, use the original count method
data_count = len(data_dict)
logger.info(
f"Process {os.getpid()} KV writting {data_count} records to {self.namespace}"
)
write_json(data_dict, self._file_name)
await clear_all_update_flags(self.namespace)
async def get_all(self) -> dict[str, Any]:
"""Get all data from storage
@@ -73,15 +114,16 @@ class JsonKVStorage(BaseKVStorage):
return set(keys) - set(self._data.keys())
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
logger.info(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
logger.info(f"Inserting {len(data)} records to {self.namespace}")
async with self._storage_lock:
left_data = {k: v for k, v in data.items() if k not in self._data}
self._data.update(left_data)
self._data.update(data)
await set_all_update_flags(self.namespace)
async def delete(self, ids: list[str]) -> None:
async with self._storage_lock:
for doc_id in ids:
self._data.pop(doc_id, None)
await set_all_update_flags(self.namespace)
await self.index_done_callback()

View File

@@ -233,3 +233,57 @@ class MilvusVectorDBStorage(BaseVectorStorage):
except Exception as e:
logger.error(f"Error searching for records with prefix '{prefix}': {e}")
return []
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
try:
# Query Milvus for a specific ID
result = self._client.query(
collection_name=self.namespace,
filter=f'id == "{id}"',
output_fields=list(self.meta_fields) + ["id"],
)
if not result or len(result) == 0:
return None
return result[0]
except Exception as e:
logger.error(f"Error retrieving vector data for ID {id}: {e}")
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
try:
# Prepare the ID filter expression
id_list = '", "'.join(ids)
filter_expr = f'id in ["{id_list}"]'
# Query Milvus with the filter
result = self._client.query(
collection_name=self.namespace,
filter=filter_expr,
output_fields=list(self.meta_fields) + ["id"],
)
return result or []
except Exception as e:
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
return []

View File

@@ -1073,6 +1073,59 @@ class MongoVectorDBStorage(BaseVectorStorage):
logger.error(f"Error searching by prefix in {self.namespace}: {str(e)}")
return []
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
try:
# Search for the specific ID in MongoDB
result = await self._data.find_one({"_id": id})
if result:
# Format the result to include id field expected by API
result_dict = dict(result)
if "_id" in result_dict and "id" not in result_dict:
result_dict["id"] = result_dict["_id"]
return result_dict
return None
except Exception as e:
logger.error(f"Error retrieving vector data for ID {id}: {e}")
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
try:
# Query MongoDB for multiple IDs
cursor = self._data.find({"_id": {"$in": ids}})
results = await cursor.to_list(length=None)
# Format results to include id field expected by API
formatted_results = []
for result in results:
result_dict = dict(result)
if "_id" in result_dict and "id" not in result_dict:
result_dict["id"] = result_dict["_id"]
formatted_results.append(result_dict)
return formatted_results
except Exception as e:
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
return []
async def get_or_create_collection(db: AsyncIOMotorDatabase, collection_name: str):
collection_names = await db.list_collection_names()

View File

@@ -258,3 +258,33 @@ class NanoVectorDBStorage(BaseVectorStorage):
logger.debug(f"Found {len(matching_records)} records with prefix '{prefix}'")
return matching_records
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
client = await self._get_client()
result = client.get([id])
if result:
return result[0]
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
client = await self._get_client()
return client.get(ids)

File diff suppressed because it is too large Load Diff

View File

@@ -531,6 +531,80 @@ class OracleVectorDBStorage(BaseVectorStorage):
logger.error(f"Error searching records with prefix '{prefix}': {e}")
return []
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
try:
# Determine the table name based on namespace
table_name = namespace_to_table_name(self.namespace)
if not table_name:
logger.error(f"Unknown namespace for ID lookup: {self.namespace}")
return None
# Create the appropriate ID field name based on namespace
id_field = "entity_id" if "NODES" in table_name else "relation_id"
if "CHUNKS" in table_name:
id_field = "chunk_id"
# Prepare and execute the query
query = f"""
SELECT * FROM {table_name}
WHERE {id_field} = :id AND workspace = :workspace
"""
params = {"id": id, "workspace": self.db.workspace}
result = await self.db.query(query, params)
return result
except Exception as e:
logger.error(f"Error retrieving vector data for ID {id}: {e}")
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
try:
# Determine the table name based on namespace
table_name = namespace_to_table_name(self.namespace)
if not table_name:
logger.error(f"Unknown namespace for IDs lookup: {self.namespace}")
return []
# Create the appropriate ID field name based on namespace
id_field = "entity_id" if "NODES" in table_name else "relation_id"
if "CHUNKS" in table_name:
id_field = "chunk_id"
# Format the list of IDs for SQL IN clause
ids_list = ", ".join([f"'{id}'" for id in ids])
# Prepare and execute the query
query = f"""
SELECT * FROM {table_name}
WHERE {id_field} IN ({ids_list}) AND workspace = :workspace
"""
params = {"workspace": self.db.workspace}
results = await self.db.query(query, params, multirows=True)
return results or []
except Exception as e:
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
return []
@final
@dataclass

View File

@@ -621,6 +621,60 @@ class PGVectorStorage(BaseVectorStorage):
logger.error(f"Error during prefix search for '{prefix}': {e}")
return []
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
table_name = namespace_to_table_name(self.namespace)
if not table_name:
logger.error(f"Unknown namespace for ID lookup: {self.namespace}")
return None
query = f"SELECT * FROM {table_name} WHERE workspace=$1 AND id=$2"
params = {"workspace": self.db.workspace, "id": id}
try:
result = await self.db.query(query, params)
if result:
return dict(result)
return None
except Exception as e:
logger.error(f"Error retrieving vector data for ID {id}: {e}")
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
table_name = namespace_to_table_name(self.namespace)
if not table_name:
logger.error(f"Unknown namespace for IDs lookup: {self.namespace}")
return []
ids_str = ",".join([f"'{id}'" for id in ids])
query = f"SELECT * FROM {table_name} WHERE workspace=$1 AND id IN ({ids_str})"
params = {"workspace": self.db.workspace}
try:
results = await self.db.query(query, params, multirows=True)
return [dict(record) for record in results]
except Exception as e:
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
return []
@final
@dataclass

View File

@@ -7,11 +7,17 @@ from typing import Any, Dict, Optional, Union, TypeVar, Generic
# Define a direct print function for critical logs that must be visible in all processes
def direct_log(message, level="INFO"):
def direct_log(message, level="INFO", enable_output: bool = True):
"""
Log a message directly to stderr to ensure visibility in all processes,
including the Gunicorn master process.
Args:
message: The message to log
level: Log level (default: "INFO")
enable_output: Whether to actually output the log (default: True)
"""
if enable_output:
print(f"{level}: {message}", file=sys.stderr, flush=True)
@@ -32,55 +38,165 @@ _update_flags: Optional[Dict[str, bool]] = None # namespace -> updated
_storage_lock: Optional[LockType] = None
_internal_lock: Optional[LockType] = None
_pipeline_status_lock: Optional[LockType] = None
_graph_db_lock: Optional[LockType] = None
_data_init_lock: Optional[LockType] = None
class UnifiedLock(Generic[T]):
"""Provide a unified lock interface type for asyncio.Lock and multiprocessing.Lock"""
def __init__(self, lock: Union[ProcessLock, asyncio.Lock], is_async: bool):
def __init__(
self,
lock: Union[ProcessLock, asyncio.Lock],
is_async: bool,
name: str = "unnamed",
enable_logging: bool = True,
):
self._lock = lock
self._is_async = is_async
self._pid = os.getpid() # for debug only
self._name = name # for debug only
self._enable_logging = enable_logging # for debug only
async def __aenter__(self) -> "UnifiedLock[T]":
try:
direct_log(
f"== Lock == Process {self._pid}: Acquiring lock '{self._name}' (async={self._is_async})",
enable_output=self._enable_logging,
)
if self._is_async:
await self._lock.acquire()
else:
self._lock.acquire()
direct_log(
f"== Lock == Process {self._pid}: Lock '{self._name}' acquired (async={self._is_async})",
enable_output=self._enable_logging,
)
return self
except Exception as e:
direct_log(
f"== Lock == Process {self._pid}: Failed to acquire lock '{self._name}': {e}",
level="ERROR",
enable_output=self._enable_logging,
)
raise
async def __aexit__(self, exc_type, exc_val, exc_tb):
try:
direct_log(
f"== Lock == Process {self._pid}: Releasing lock '{self._name}' (async={self._is_async})",
enable_output=self._enable_logging,
)
if self._is_async:
self._lock.release()
else:
self._lock.release()
direct_log(
f"== Lock == Process {self._pid}: Lock '{self._name}' released (async={self._is_async})",
enable_output=self._enable_logging,
)
except Exception as e:
direct_log(
f"== Lock == Process {self._pid}: Failed to release lock '{self._name}': {e}",
level="ERROR",
enable_output=self._enable_logging,
)
raise
def __enter__(self) -> "UnifiedLock[T]":
"""For backward compatibility"""
try:
if self._is_async:
raise RuntimeError("Use 'async with' for shared_storage lock")
direct_log(
f"== Lock == Process {self._pid}: Acquiring lock '{self._name}' (sync)",
enable_output=self._enable_logging,
)
self._lock.acquire()
direct_log(
f"== Lock == Process {self._pid}: Lock '{self._name}' acquired (sync)",
enable_output=self._enable_logging,
)
return self
except Exception as e:
direct_log(
f"== Lock == Process {self._pid}: Failed to acquire lock '{self._name}' (sync): {e}",
level="ERROR",
enable_output=self._enable_logging,
)
raise
def __exit__(self, exc_type, exc_val, exc_tb):
"""For backward compatibility"""
try:
if self._is_async:
raise RuntimeError("Use 'async with' for shared_storage lock")
direct_log(
f"== Lock == Process {self._pid}: Releasing lock '{self._name}' (sync)",
enable_output=self._enable_logging,
)
self._lock.release()
direct_log(
f"== Lock == Process {self._pid}: Lock '{self._name}' released (sync)",
enable_output=self._enable_logging,
)
except Exception as e:
direct_log(
f"== Lock == Process {self._pid}: Failed to release lock '{self._name}' (sync): {e}",
level="ERROR",
enable_output=self._enable_logging,
)
raise
def get_internal_lock() -> UnifiedLock:
def get_internal_lock(enable_logging: bool = False) -> UnifiedLock:
"""return unified storage lock for data consistency"""
return UnifiedLock(lock=_internal_lock, is_async=not is_multiprocess)
return UnifiedLock(
lock=_internal_lock,
is_async=not is_multiprocess,
name="internal_lock",
enable_logging=enable_logging,
)
def get_storage_lock() -> UnifiedLock:
def get_storage_lock(enable_logging: bool = False) -> UnifiedLock:
"""return unified storage lock for data consistency"""
return UnifiedLock(lock=_storage_lock, is_async=not is_multiprocess)
return UnifiedLock(
lock=_storage_lock,
is_async=not is_multiprocess,
name="storage_lock",
enable_logging=enable_logging,
)
def get_pipeline_status_lock() -> UnifiedLock:
def get_pipeline_status_lock(enable_logging: bool = False) -> UnifiedLock:
"""return unified storage lock for data consistency"""
return UnifiedLock(lock=_pipeline_status_lock, is_async=not is_multiprocess)
return UnifiedLock(
lock=_pipeline_status_lock,
is_async=not is_multiprocess,
name="pipeline_status_lock",
enable_logging=enable_logging,
)
def get_graph_db_lock(enable_logging: bool = False) -> UnifiedLock:
"""return unified graph database lock for ensuring atomic operations"""
return UnifiedLock(
lock=_graph_db_lock,
is_async=not is_multiprocess,
name="graph_db_lock",
enable_logging=enable_logging,
)
def get_data_init_lock(enable_logging: bool = False) -> UnifiedLock:
"""return unified data initialization lock for ensuring atomic data initialization"""
return UnifiedLock(
lock=_data_init_lock,
is_async=not is_multiprocess,
name="data_init_lock",
enable_logging=enable_logging,
)
def initialize_share_data(workers: int = 1):
@@ -108,6 +224,8 @@ def initialize_share_data(workers: int = 1):
_storage_lock, \
_internal_lock, \
_pipeline_status_lock, \
_graph_db_lock, \
_data_init_lock, \
_shared_dicts, \
_init_flags, \
_initialized, \
@@ -120,14 +238,16 @@ def initialize_share_data(workers: int = 1):
)
return
_manager = Manager()
_workers = workers
if workers > 1:
is_multiprocess = True
_manager = Manager()
_internal_lock = _manager.Lock()
_storage_lock = _manager.Lock()
_pipeline_status_lock = _manager.Lock()
_graph_db_lock = _manager.Lock()
_data_init_lock = _manager.Lock()
_shared_dicts = _manager.dict()
_init_flags = _manager.dict()
_update_flags = _manager.dict()
@@ -139,6 +259,8 @@ def initialize_share_data(workers: int = 1):
_internal_lock = asyncio.Lock()
_storage_lock = asyncio.Lock()
_pipeline_status_lock = asyncio.Lock()
_graph_db_lock = asyncio.Lock()
_data_init_lock = asyncio.Lock()
_shared_dicts = {}
_init_flags = {}
_update_flags = {}
@@ -164,6 +286,7 @@ async def initialize_pipeline_status():
history_messages = _manager.list() if is_multiprocess else []
pipeline_namespace.update(
{
"autoscanned": False, # Auto-scan started
"busy": False, # Control concurrent processes
"job_name": "Default Job", # Current job name (indexing files/indexing texts)
"job_start": None, # Job start time
@@ -200,7 +323,12 @@ async def get_update_flag(namespace: str):
if is_multiprocess and _manager is not None:
new_update_flag = _manager.Value("b", False)
else:
new_update_flag = False
# Create a simple mutable object to store boolean value for compatibility with mutiprocess
class MutableBoolean:
def __init__(self, initial_value=False):
self.value = initial_value
new_update_flag = MutableBoolean(False)
_update_flags[namespace].append(new_update_flag)
return new_update_flag
@@ -220,7 +348,26 @@ async def set_all_update_flags(namespace: str):
if is_multiprocess:
_update_flags[namespace][i].value = True
else:
_update_flags[namespace][i] = True
# Use .value attribute instead of direct assignment
_update_flags[namespace][i].value = True
async def clear_all_update_flags(namespace: str):
"""Clear all update flag of namespace indicating all workers need to reload data from files"""
global _update_flags
if _update_flags is None:
raise ValueError("Try to create namespace before Shared-Data is initialized")
async with get_internal_lock():
if namespace not in _update_flags:
raise ValueError(f"Namespace {namespace} not found in update flags")
# Update flags for both modes
for i in range(len(_update_flags[namespace])):
if is_multiprocess:
_update_flags[namespace][i].value = False
else:
# Use .value attribute instead of direct assignment
_update_flags[namespace][i].value = False
async def get_all_update_flags_status() -> Dict[str, list]:
@@ -247,7 +394,7 @@ async def get_all_update_flags_status() -> Dict[str, list]:
return result
def try_initialize_namespace(namespace: str) -> bool:
async def try_initialize_namespace(namespace: str) -> bool:
"""
Returns True if the current worker(process) gets initialization permission for loading data later.
The worker does not get the permission is prohibited to load data from files.
@@ -257,6 +404,7 @@ def try_initialize_namespace(namespace: str) -> bool:
if _init_flags is None:
raise ValueError("Try to create nanmespace before Shared-Data is initialized")
async with get_internal_lock():
if namespace not in _init_flags:
_init_flags[namespace] = True
direct_log(
@@ -266,6 +414,7 @@ def try_initialize_namespace(namespace: str) -> bool:
direct_log(
f"Process {os.getpid()} storage namespace already initialized: [{namespace}]"
)
return False
@@ -304,6 +453,8 @@ def finalize_share_data():
_storage_lock, \
_internal_lock, \
_pipeline_status_lock, \
_graph_db_lock, \
_data_init_lock, \
_shared_dicts, \
_init_flags, \
_initialized, \
@@ -369,6 +520,8 @@ def finalize_share_data():
_storage_lock = None
_internal_lock = None
_pipeline_status_lock = None
_graph_db_lock = None
_data_init_lock = None
_update_flags = None
direct_log(f"Process {os.getpid()} storage data finalization complete")

View File

@@ -465,6 +465,100 @@ class TiDBVectorDBStorage(BaseVectorStorage):
logger.error(f"Error searching records with prefix '{prefix}': {e}")
return []
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
try:
# Determine which table to query based on namespace
if self.namespace == NameSpace.VECTOR_STORE_ENTITIES:
sql_template = """
SELECT entity_id as id, name as entity_name, entity_type, description, content
FROM LIGHTRAG_GRAPH_NODES
WHERE entity_id = :entity_id AND workspace = :workspace
"""
params = {"entity_id": id, "workspace": self.db.workspace}
elif self.namespace == NameSpace.VECTOR_STORE_RELATIONSHIPS:
sql_template = """
SELECT relation_id as id, source_name as src_id, target_name as tgt_id,
keywords, description, content
FROM LIGHTRAG_GRAPH_EDGES
WHERE relation_id = :relation_id AND workspace = :workspace
"""
params = {"relation_id": id, "workspace": self.db.workspace}
elif self.namespace == NameSpace.VECTOR_STORE_CHUNKS:
sql_template = """
SELECT chunk_id as id, content, tokens, chunk_order_index, full_doc_id
FROM LIGHTRAG_DOC_CHUNKS
WHERE chunk_id = :chunk_id AND workspace = :workspace
"""
params = {"chunk_id": id, "workspace": self.db.workspace}
else:
logger.warning(
f"Namespace {self.namespace} not supported for get_by_id"
)
return None
result = await self.db.query(sql_template, params=params)
return result
except Exception as e:
logger.error(f"Error retrieving vector data for ID {id}: {e}")
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
try:
# Format IDs for SQL IN clause
ids_str = ", ".join([f"'{id}'" for id in ids])
# Determine which table to query based on namespace
if self.namespace == NameSpace.VECTOR_STORE_ENTITIES:
sql_template = f"""
SELECT entity_id as id, name as entity_name, entity_type, description, content
FROM LIGHTRAG_GRAPH_NODES
WHERE entity_id IN ({ids_str}) AND workspace = :workspace
"""
elif self.namespace == NameSpace.VECTOR_STORE_RELATIONSHIPS:
sql_template = f"""
SELECT relation_id as id, source_name as src_id, target_name as tgt_id,
keywords, description, content
FROM LIGHTRAG_GRAPH_EDGES
WHERE relation_id IN ({ids_str}) AND workspace = :workspace
"""
elif self.namespace == NameSpace.VECTOR_STORE_CHUNKS:
sql_template = f"""
SELECT chunk_id as id, content, tokens, chunk_order_index, full_doc_id
FROM LIGHTRAG_DOC_CHUNKS
WHERE chunk_id IN ({ids_str}) AND workspace = :workspace
"""
else:
logger.warning(
f"Namespace {self.namespace} not supported for get_by_ids"
)
return []
params = {"workspace": self.db.workspace}
results = await self.db.query(sql_template, params=params, multirows=True)
return results if results else []
except Exception as e:
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
return []
@final
@dataclass

View File

@@ -30,11 +30,10 @@ from .namespace import NameSpace, make_namespace
from .operate import (
chunking_by_token_size,
extract_entities,
extract_keywords_only,
kg_query,
kg_query_with_keywords,
mix_kg_vector_query,
naive_query,
query_with_keywords,
)
from .prompt import GRAPH_FIELD_SEP, PROMPTS
from .utils import (
@@ -45,6 +44,9 @@ from .utils import (
encode_string_by_tiktoken,
lazy_external_import,
limit_async_func_call,
get_content_summary,
clean_text,
check_storage_env_vars,
logger,
)
from .types import KnowledgeGraph
@@ -309,7 +311,7 @@ class LightRAG:
# Verify storage implementation compatibility
verify_storage_implementation(storage_type, storage_name)
# Check environment variables
# self.check_storage_env_vars(storage_name)
check_storage_env_vars(storage_name)
# Ensure vector_db_storage_cls_kwargs has required fields
self.vector_db_storage_cls_kwargs = {
@@ -354,6 +356,9 @@ class LightRAG:
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(
self
), # Add global_config to ensure cache works properly
embedding_func=self.embedding_func,
)
@@ -404,18 +409,8 @@ class LightRAG:
embedding_func=None,
)
if self.llm_response_cache and hasattr(
self.llm_response_cache, "global_config"
):
# Directly use llm_response_cache, don't create a new object
hashing_kv = self.llm_response_cache
else:
hashing_kv = self.key_string_value_json_storage_cls( # type: ignore
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
)
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
partial(
@@ -543,11 +538,6 @@ class LightRAG:
storage_class = lazy_external_import(import_path, storage_name)
return storage_class
@staticmethod
def clean_text(text: str) -> str:
"""Clean text by removing null bytes (0x00) and whitespace"""
return text.strip().replace("\x00", "")
def insert(
self,
input: str | list[str],
@@ -590,6 +580,7 @@ class LightRAG:
split_by_character, split_by_character_only
)
# TODO: deprecated, use insert instead
def insert_custom_chunks(
self,
full_text: str,
@@ -601,14 +592,15 @@ class LightRAG:
self.ainsert_custom_chunks(full_text, text_chunks, doc_id)
)
# TODO: deprecated, use ainsert instead
async def ainsert_custom_chunks(
self, full_text: str, text_chunks: list[str], doc_id: str | None = None
) -> None:
update_storage = False
try:
# Clean input texts
full_text = self.clean_text(full_text)
text_chunks = [self.clean_text(chunk) for chunk in text_chunks]
full_text = clean_text(full_text)
text_chunks = [clean_text(chunk) for chunk in text_chunks]
# Process cleaned texts
if doc_id is None:
@@ -687,7 +679,7 @@ class LightRAG:
contents = {id_: doc for id_, doc in zip(ids, input)}
else:
# Clean input text and remove duplicates
input = list(set(self.clean_text(doc) for doc in input))
input = list(set(clean_text(doc) for doc in input))
# Generate contents dict of MD5 hash IDs and documents
contents = {compute_mdhash_id(doc, prefix="doc-"): doc for doc in input}
@@ -703,7 +695,7 @@ class LightRAG:
new_docs: dict[str, Any] = {
id_: {
"content": content,
"content_summary": self._get_content_summary(content),
"content_summary": get_content_summary(content),
"content_length": len(content),
"status": DocStatus.PENDING,
"created_at": datetime.now().isoformat(),
@@ -892,7 +884,9 @@ class LightRAG:
self.chunks_vdb.upsert(chunks)
)
entity_relation_task = asyncio.create_task(
self._process_entity_relation_graph(chunks)
self._process_entity_relation_graph(
chunks, pipeline_status, pipeline_status_lock
)
)
full_docs_task = asyncio.create_task(
self.full_docs.upsert(
@@ -1007,21 +1001,27 @@ class LightRAG:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
async def _process_entity_relation_graph(
self, chunk: dict[str, Any], pipeline_status=None, pipeline_status_lock=None
) -> None:
try:
await extract_entities(
chunk,
knowledge_graph_inst=self.chunk_entity_relation_graph,
entity_vdb=self.entities_vdb,
relationships_vdb=self.relationships_vdb,
llm_response_cache=self.llm_response_cache,
global_config=asdict(self),
pipeline_status=pipeline_status,
pipeline_status_lock=pipeline_status_lock,
llm_response_cache=self.llm_response_cache,
)
except Exception as e:
logger.error("Failed to extract entities and relationships")
raise e
async def _insert_done(self) -> None:
async def _insert_done(
self, pipeline_status=None, pipeline_status_lock=None
) -> None:
tasks = [
cast(StorageNameSpace, storage_inst).index_done_callback()
for storage_inst in [ # type: ignore
@@ -1040,10 +1040,8 @@ class LightRAG:
log_message = "All Insert done"
logger.info(log_message)
# 获取 pipeline_status 并更新 latest_message 和 history_messages
from lightrag.kg.shared_storage import get_namespace_data
pipeline_status = await get_namespace_data("pipeline_status")
if pipeline_status is not None and pipeline_status_lock is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
@@ -1062,7 +1060,7 @@ class LightRAG:
all_chunks_data: dict[str, dict[str, str]] = {}
chunk_to_source_map: dict[str, str] = {}
for chunk_data in custom_kg.get("chunks", []):
chunk_content = self.clean_text(chunk_data["content"])
chunk_content = clean_text(chunk_data["content"])
source_id = chunk_data["source_id"]
tokens = len(
encode_string_by_tiktoken(
@@ -1260,16 +1258,7 @@ class LightRAG:
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
hashing_kv=self.llm_response_cache, # Directly use llm_response_cache
system_prompt=system_prompt,
)
elif param.mode == "naive":
@@ -1279,16 +1268,7 @@ class LightRAG:
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
hashing_kv=self.llm_response_cache, # Directly use llm_response_cache
system_prompt=system_prompt,
)
elif param.mode == "mix":
@@ -1301,16 +1281,7 @@ class LightRAG:
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
hashing_kv=self.llm_response_cache, # Directly use llm_response_cache
system_prompt=system_prompt,
)
else:
@@ -1322,8 +1293,17 @@ class LightRAG:
self, query: str, prompt: str, param: QueryParam = QueryParam()
):
"""
1. Extract keywords from the 'query' using new function in operate.py.
2. Then run the standard aquery() flow with the final prompt (formatted_question).
Query with separate keyword extraction step.
This method extracts keywords from the query first, then uses them for the query.
Args:
query: User query
prompt: Additional prompt for the query
param: Query parameters
Returns:
Query response
"""
loop = always_get_an_event_loop()
return loop.run_until_complete(
@@ -1334,100 +1314,29 @@ class LightRAG:
self, query: str, prompt: str, param: QueryParam = QueryParam()
) -> str | AsyncIterator[str]:
"""
1. Calls extract_keywords_only to get HL/LL keywords from 'query'.
2. Then calls kg_query(...) or naive_query(...), etc. as the main query, while also injecting the newly extracted keywords if needed.
Async version of query_with_separate_keyword_extraction.
Args:
query: User query
prompt: Additional prompt for the query
param: Query parameters
Returns:
Query response or async iterator
"""
# ---------------------
# STEP 1: Keyword Extraction
# ---------------------
hl_keywords, ll_keywords = await extract_keywords_only(
text=query,
response = await query_with_keywords(
query=query,
prompt=prompt,
param=param,
knowledge_graph_inst=self.chunk_entity_relation_graph,
entities_vdb=self.entities_vdb,
relationships_vdb=self.relationships_vdb,
chunks_vdb=self.chunks_vdb,
text_chunks_db=self.text_chunks,
global_config=asdict(self),
hashing_kv=self.llm_response_cache
or self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
hashing_kv=self.llm_response_cache,
)
param.hl_keywords = hl_keywords
param.ll_keywords = ll_keywords
# ---------------------
# STEP 2: Final Query Logic
# ---------------------
# Create a new string with the prompt and the keywords
ll_keywords_str = ", ".join(ll_keywords)
hl_keywords_str = ", ".join(hl_keywords)
formatted_question = f"{prompt}\n\n### Keywords:\nHigh-level: {hl_keywords_str}\nLow-level: {ll_keywords_str}\n\n### Query:\n{query}"
if param.mode in ["local", "global", "hybrid"]:
response = await kg_query_with_keywords(
formatted_question,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
)
elif param.mode == "naive":
response = await naive_query(
formatted_question,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
)
elif param.mode == "mix":
response = await mix_kg_vector_query(
formatted_question,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.chunks_vdb,
self.text_chunks,
param,
asdict(self),
hashing_kv=self.llm_response_cache
if self.llm_response_cache
and hasattr(self.llm_response_cache, "global_config")
else self.key_string_value_json_storage_cls(
namespace=make_namespace(
self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE
),
global_config=asdict(self),
embedding_func=self.embedding_func,
),
)
else:
raise ValueError(f"Unknown mode {param.mode}")
await self._query_done()
return response
@@ -1525,21 +1434,6 @@ class LightRAG:
]
)
def _get_content_summary(self, content: str, max_length: int = 100) -> str:
"""Get summary of document content
Args:
content: Original document content
max_length: Maximum length of summary
Returns:
Truncated content with ellipsis if needed
"""
content = content.strip()
if len(content) <= max_length:
return content
return content[:max_length] + "..."
async def get_processing_status(self) -> dict[str, int]:
"""Get current document processing status counts
@@ -1816,19 +1710,7 @@ class LightRAG:
async def get_entity_info(
self, entity_name: str, include_vector_data: bool = False
) -> dict[str, str | None | dict[str, str]]:
"""Get detailed information of an entity
Args:
entity_name: Entity name (no need for quotes)
include_vector_data: Whether to include data from the vector database
Returns:
dict: A dictionary containing entity information, including:
- entity_name: Entity name
- source_id: Source document ID
- graph_data: Complete node data from the graph database
- vector_data: (optional) Data from the vector database
"""
"""Get detailed information of an entity"""
# Get information from the graph
node_data = await self.chunk_entity_relation_graph.get_node(entity_name)
@@ -1843,29 +1725,15 @@ class LightRAG:
# Optional: Get vector database information
if include_vector_data:
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
vector_data = self.entities_vdb._client.get([entity_id])
result["vector_data"] = vector_data[0] if vector_data else None
vector_data = await self.entities_vdb.get_by_id(entity_id)
result["vector_data"] = vector_data
return result
async def get_relation_info(
self, src_entity: str, tgt_entity: str, include_vector_data: bool = False
) -> dict[str, str | None | dict[str, str]]:
"""Get detailed information of a relationship
Args:
src_entity: Source entity name (no need for quotes)
tgt_entity: Target entity name (no need for quotes)
include_vector_data: Whether to include data from the vector database
Returns:
dict: A dictionary containing relationship information, including:
- src_entity: Source entity name
- tgt_entity: Target entity name
- source_id: Source document ID
- graph_data: Complete edge data from the graph database
- vector_data: (optional) Data from the vector database
"""
"""Get detailed information of a relationship"""
# Get information from the graph
edge_data = await self.chunk_entity_relation_graph.get_edge(
@@ -1883,8 +1751,8 @@ class LightRAG:
# Optional: Get vector database information
if include_vector_data:
rel_id = compute_mdhash_id(src_entity + tgt_entity, prefix="rel-")
vector_data = self.relationships_vdb._client.get([rel_id])
result["vector_data"] = vector_data[0] if vector_data else None
vector_data = await self.relationships_vdb.get_by_id(rel_id)
result["vector_data"] = vector_data
return result
@@ -2682,6 +2550,12 @@ class LightRAG:
# 9. Delete source entities
for entity_name in source_entities:
if entity_name == target_entity:
logger.info(
f"Skipping deletion of '{entity_name}' as it's also the target entity"
)
continue
# Delete entity node from knowledge graph
await self.chunk_entity_relation_graph.delete_node(entity_name)

View File

@@ -55,6 +55,7 @@ async def azure_openai_complete_if_cache(
openai_async_client = AsyncAzureOpenAI(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
azure_deployment=model,
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
)
@@ -136,6 +137,7 @@ async def azure_openai_embed(
openai_async_client = AsyncAzureOpenAI(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
azure_deployment=model,
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
)

View File

@@ -3,6 +3,7 @@ from __future__ import annotations
import asyncio
import json
import re
import os
from typing import Any, AsyncIterator
from collections import Counter, defaultdict
@@ -140,18 +141,36 @@ async def _handle_single_entity_extraction(
):
if len(record_attributes) < 4 or record_attributes[0] != '"entity"':
return None
# add this record as a node in the G
# Clean and validate entity name
entity_name = clean_str(record_attributes[1]).strip('"')
if not entity_name.strip():
logger.warning(
f"Entity extraction error: empty entity name in: {record_attributes}"
)
return None
# Clean and validate entity type
entity_type = clean_str(record_attributes[2]).strip('"')
if not entity_type.strip() or entity_type.startswith('("'):
logger.warning(
f"Entity extraction error: invalid entity type in: {record_attributes}"
)
return None
# Clean and validate description
entity_description = clean_str(record_attributes[3]).strip('"')
entity_source_id = chunk_key
if not entity_description.strip():
logger.warning(
f"Entity extraction error: empty description for entity '{entity_name}' of type '{entity_type}'"
)
return None
return dict(
entity_name=entity_name,
entity_type=entity_type,
description=entity_description,
source_id=entity_source_id,
source_id=chunk_key,
metadata={"created_at": time.time()},
)
@@ -220,6 +239,7 @@ async def _merge_nodes_then_upsert(
entity_name, description, global_config
)
node_data = dict(
entity_id=entity_name,
entity_type=entity_type,
description=description,
source_id=source_id,
@@ -301,6 +321,7 @@ async def _merge_edges_then_upsert(
await knowledge_graph_inst.upsert_node(
need_insert_id,
node_data={
"entity_id": need_insert_id,
"source_id": source_id,
"description": description,
"entity_type": "UNKNOWN",
@@ -337,11 +358,10 @@ async def extract_entities(
entity_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
global_config: dict[str, str],
pipeline_status: dict = None,
pipeline_status_lock=None,
llm_response_cache: BaseKVStorage | None = None,
) -> None:
from lightrag.kg.shared_storage import get_namespace_data
pipeline_status = await get_namespace_data("pipeline_status")
use_llm_func: callable = global_config["llm_model_func"]
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
enable_llm_cache_for_entity_extract: bool = global_config[
@@ -400,6 +420,7 @@ async def extract_entities(
else:
_prompt = input_text
# TODO add cache_type="extract"
arg_hash = compute_args_hash(_prompt)
cached_return, _1, _2, _3 = await handle_cache(
llm_response_cache,
@@ -407,7 +428,6 @@ async def extract_entities(
_prompt,
"default",
cache_type="extract",
force_llm_cache=True,
)
if cached_return:
logger.debug(f"Found cache for {arg_hash}")
@@ -436,47 +456,22 @@ async def extract_entities(
else:
return await use_llm_func(input_text)
async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]):
""" "Prpocess a single chunk
async def _process_extraction_result(result: str, chunk_key: str):
"""Process a single extraction result (either initial or gleaning)
Args:
chunk_key_dp (tuple[str, TextChunkSchema]):
("chunck-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int})
result (str): The extraction result to process
chunk_key (str): The chunk key for source tracking
Returns:
tuple: (nodes_dict, edges_dict) containing the extracted entities and relationships
"""
nonlocal processed_chunks
chunk_key = chunk_key_dp[0]
chunk_dp = chunk_key_dp[1]
content = chunk_dp["content"]
# hint_prompt = entity_extract_prompt.format(**context_base, input_text=content)
hint_prompt = entity_extract_prompt.format(
**context_base, input_text="{input_text}"
).format(**context_base, input_text=content)
final_result = await _user_llm_func_with_cache(hint_prompt)
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
for now_glean_index in range(entity_extract_max_gleaning):
glean_result = await _user_llm_func_with_cache(
continue_prompt, history_messages=history
)
history += pack_user_ass_to_openai_messages(continue_prompt, glean_result)
final_result += glean_result
if now_glean_index == entity_extract_max_gleaning - 1:
break
if_loop_result: str = await _user_llm_func_with_cache(
if_loop_prompt, history_messages=history
)
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
if if_loop_result != "yes":
break
maybe_nodes = defaultdict(list)
maybe_edges = defaultdict(list)
records = split_string_by_multi_markers(
final_result,
result,
[context_base["record_delimiter"], context_base["completion_delimiter"]],
)
maybe_nodes = defaultdict(list)
maybe_edges = defaultdict(list)
for record in records:
record = re.search(r"\((.*)\)", record)
if record is None:
@@ -485,6 +480,7 @@ async def extract_entities(
record_attributes = split_string_by_multi_markers(
record, [context_base["tuple_delimiter"]]
)
if_entities = await _handle_single_entity_extraction(
record_attributes, chunk_key
)
@@ -499,11 +495,69 @@ async def extract_entities(
maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append(
if_relation
)
return maybe_nodes, maybe_edges
async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]):
"""Process a single chunk
Args:
chunk_key_dp (tuple[str, TextChunkSchema]):
("chunk-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int})
"""
nonlocal processed_chunks
chunk_key = chunk_key_dp[0]
chunk_dp = chunk_key_dp[1]
content = chunk_dp["content"]
# Get initial extraction
hint_prompt = entity_extract_prompt.format(
**context_base, input_text="{input_text}"
).format(**context_base, input_text=content)
final_result = await _user_llm_func_with_cache(hint_prompt)
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
# Process initial extraction
maybe_nodes, maybe_edges = await _process_extraction_result(
final_result, chunk_key
)
# Process additional gleaning results
for now_glean_index in range(entity_extract_max_gleaning):
glean_result = await _user_llm_func_with_cache(
continue_prompt, history_messages=history
)
history += pack_user_ass_to_openai_messages(continue_prompt, glean_result)
# Process gleaning result separately
glean_nodes, glean_edges = await _process_extraction_result(
glean_result, chunk_key
)
# Merge results
for entity_name, entities in glean_nodes.items():
maybe_nodes[entity_name].extend(entities)
for edge_key, edges in glean_edges.items():
maybe_edges[edge_key].extend(edges)
if now_glean_index == entity_extract_max_gleaning - 1:
break
if_loop_result: str = await _user_llm_func_with_cache(
if_loop_prompt, history_messages=history
)
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
if if_loop_result != "yes":
break
processed_chunks += 1
entities_count = len(maybe_nodes)
relations_count = len(maybe_edges)
log_message = f" Chunk {processed_chunks}/{total_chunks}: extracted {entities_count} entities and {relations_count} relationships (deduplicated)"
logger.info(log_message)
if pipeline_status is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
return dict(maybe_nodes), dict(maybe_edges)
@@ -519,6 +573,12 @@ async def extract_entities(
for k, v in m_edges.items():
maybe_edges[tuple(sorted(k))].extend(v)
from .kg.shared_storage import get_graph_db_lock
graph_db_lock = get_graph_db_lock(enable_logging=False)
# Ensure that nodes and edges are merged and upserted atomically
async with graph_db_lock:
all_entities_data = await asyncio.gather(
*[
_merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
@@ -528,7 +588,9 @@ async def extract_entities(
all_relationships_data = await asyncio.gather(
*[
_merge_edges_then_upsert(k[0], k[1], v, knowledge_graph_inst, global_config)
_merge_edges_then_upsert(
k[0], k[1], v, knowledge_graph_inst, global_config
)
for k, v in maybe_edges.items()
]
)
@@ -536,6 +598,8 @@ async def extract_entities(
if not (all_entities_data or all_relationships_data):
log_message = "Didn't extract any entities and relationships."
logger.info(log_message)
if pipeline_status is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
return
@@ -543,16 +607,22 @@ async def extract_entities(
if not all_entities_data:
log_message = "Didn't extract any entities"
logger.info(log_message)
if pipeline_status is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
if not all_relationships_data:
log_message = "Didn't extract any relationships"
logger.info(log_message)
if pipeline_status is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
log_message = f"Extracted {len(all_entities_data)} entities and {len(all_relationships_data)} relationships (deduplicated)"
logger.info(log_message)
if pipeline_status is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
verbose_debug(
@@ -1020,6 +1090,7 @@ async def _build_query_context(
text_chunks_db: BaseKVStorage,
query_param: QueryParam,
):
logger.info(f"Process {os.getpid()} buidling query context...")
if query_param.mode == "local":
entities_context, relations_context, text_units_context = await _get_node_data(
ll_keywords,
@@ -1845,3 +1916,90 @@ async def kg_query_with_keywords(
)
return response
async def query_with_keywords(
query: str,
prompt: str,
param: QueryParam,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
chunks_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage,
global_config: dict[str, str],
hashing_kv: BaseKVStorage | None = None,
) -> str | AsyncIterator[str]:
"""
Extract keywords from the query and then use them for retrieving information.
1. Extracts high-level and low-level keywords from the query
2. Formats the query with the extracted keywords and prompt
3. Uses the appropriate query method based on param.mode
Args:
query: The user's query
prompt: Additional prompt to prepend to the query
param: Query parameters
knowledge_graph_inst: Knowledge graph storage
entities_vdb: Entities vector database
relationships_vdb: Relationships vector database
chunks_vdb: Document chunks vector database
text_chunks_db: Text chunks storage
global_config: Global configuration
hashing_kv: Cache storage
Returns:
Query response or async iterator
"""
# Extract keywords
hl_keywords, ll_keywords = await extract_keywords_only(
text=query,
param=param,
global_config=global_config,
hashing_kv=hashing_kv,
)
param.hl_keywords = hl_keywords
param.ll_keywords = ll_keywords
# Create a new string with the prompt and the keywords
ll_keywords_str = ", ".join(ll_keywords)
hl_keywords_str = ", ".join(hl_keywords)
formatted_question = f"{prompt}\n\n### Keywords:\nHigh-level: {hl_keywords_str}\nLow-level: {ll_keywords_str}\n\n### Query:\n{query}"
# Use appropriate query method based on mode
if param.mode in ["local", "global", "hybrid"]:
return await kg_query_with_keywords(
formatted_question,
knowledge_graph_inst,
entities_vdb,
relationships_vdb,
text_chunks_db,
param,
global_config,
hashing_kv=hashing_kv,
)
elif param.mode == "naive":
return await naive_query(
formatted_question,
chunks_vdb,
text_chunks_db,
param,
global_config,
hashing_kv=hashing_kv,
)
elif param.mode == "mix":
return await mix_kg_vector_query(
formatted_question,
knowledge_graph_inst,
entities_vdb,
relationships_vdb,
chunks_vdb,
text_chunks_db,
param,
global_config,
hashing_kv=hashing_kv,
)
else:
raise ValueError(f"Unknown mode {param.mode}")

View File

@@ -236,7 +236,7 @@ Given the query and conversation history, list both high-level and low-level key
---Instructions---
- Consider both the current query and relevant conversation history when extracting keywords
- Output the keywords in JSON format
- Output the keywords in JSON format, it will be parsed by a JSON parser, do not add any extra content in output
- The JSON should have two keys:
- "high_level_keywords" for overarching concepts or themes
- "low_level_keywords" for specific entities or details

View File

@@ -633,15 +633,15 @@ async def handle_cache(
prompt,
mode="default",
cache_type=None,
force_llm_cache=False,
):
"""Generic cache handling function"""
if hashing_kv is None or not (
force_llm_cache or hashing_kv.global_config.get("enable_llm_cache")
):
if hashing_kv is None:
return None, None, None, None
if mode != "default": # handle cache for all type of query
if not hashing_kv.global_config.get("enable_llm_cache"):
return None, None, None, None
if mode != "default":
# Get embedding cache configuration
embedding_cache_config = hashing_kv.global_config.get(
"embedding_cache_config",
@@ -651,8 +651,7 @@ async def handle_cache(
use_llm_check = embedding_cache_config.get("use_llm_check", False)
quantized = min_val = max_val = None
if is_embedding_cache_enabled:
# Use embedding cache
if is_embedding_cache_enabled: # Use embedding simularity to match cache
current_embedding = await hashing_kv.embedding_func([prompt])
llm_model_func = hashing_kv.global_config.get("llm_model_func")
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
@@ -667,24 +666,29 @@ async def handle_cache(
cache_type=cache_type,
)
if best_cached_response is not None:
logger.info(f"Embedding cached hit(mode:{mode} type:{cache_type})")
logger.debug(f"Embedding cached hit(mode:{mode} type:{cache_type})")
return best_cached_response, None, None, None
else:
# if caching keyword embedding is enabled, return the quantized embedding for saving it latter
logger.info(f"Embedding cached missed(mode:{mode} type:{cache_type})")
logger.debug(f"Embedding cached missed(mode:{mode} type:{cache_type})")
return None, quantized, min_val, max_val
# For default mode or is_embedding_cache_enabled is False, use regular cache
# default mode is for extract_entities or naive query
else: # handle cache for entity extraction
if not hashing_kv.global_config.get("enable_llm_cache_for_entity_extract"):
return None, None, None, None
# Here is the conditions of code reaching this point:
# 1. All query mode: enable_llm_cache is True and embedding simularity is not enabled
# 2. Entity extract: enable_llm_cache_for_entity_extract is True
if exists_func(hashing_kv, "get_by_mode_and_id"):
mode_cache = await hashing_kv.get_by_mode_and_id(mode, args_hash) or {}
else:
mode_cache = await hashing_kv.get_by_id(mode) or {}
if args_hash in mode_cache:
logger.info(f"Non-embedding cached hit(mode:{mode} type:{cache_type})")
logger.debug(f"Non-embedding cached hit(mode:{mode} type:{cache_type})")
return mode_cache[args_hash]["return"], None, None, None
logger.info(f"Non-embedding cached missed(mode:{mode} type:{cache_type})")
logger.debug(f"Non-embedding cached missed(mode:{mode} type:{cache_type})")
return None, None, None, None
@@ -701,9 +705,22 @@ class CacheData:
async def save_to_cache(hashing_kv, cache_data: CacheData):
if hashing_kv is None or hasattr(cache_data.content, "__aiter__"):
"""Save data to cache, with improved handling for streaming responses and duplicate content.
Args:
hashing_kv: The key-value storage for caching
cache_data: The cache data to save
"""
# Skip if storage is None or content is a streaming response
if hashing_kv is None or not cache_data.content:
return
# If content is a streaming response, don't cache it
if hasattr(cache_data.content, "__aiter__"):
logger.debug("Streaming response detected, skipping cache")
return
# Get existing cache data
if exists_func(hashing_kv, "get_by_mode_and_id"):
mode_cache = (
await hashing_kv.get_by_mode_and_id(cache_data.mode, cache_data.args_hash)
@@ -712,6 +729,16 @@ async def save_to_cache(hashing_kv, cache_data: CacheData):
else:
mode_cache = await hashing_kv.get_by_id(cache_data.mode) or {}
# Check if we already have identical content cached
if cache_data.args_hash in mode_cache:
existing_content = mode_cache[cache_data.args_hash].get("return")
if existing_content == cache_data.content:
logger.info(
f"Cache content unchanged for {cache_data.args_hash}, skipping update"
)
return
# Update cache with new content
mode_cache[cache_data.args_hash] = {
"return": cache_data.content,
"cache_type": cache_data.cache_type,
@@ -726,6 +753,7 @@ async def save_to_cache(hashing_kv, cache_data: CacheData):
"original_prompt": cache_data.prompt,
}
# Only upsert if there's actual new content
await hashing_kv.upsert({cache_data.mode: mode_cache})
@@ -862,3 +890,52 @@ def lazy_external_import(module_name: str, class_name: str) -> Callable[..., Any
return cls(*args, **kwargs)
return import_class
def get_content_summary(content: str, max_length: int = 100) -> str:
"""Get summary of document content
Args:
content: Original document content
max_length: Maximum length of summary
Returns:
Truncated content with ellipsis if needed
"""
content = content.strip()
if len(content) <= max_length:
return content
return content[:max_length] + "..."
def clean_text(text: str) -> str:
"""Clean text by removing null bytes (0x00) and whitespace
Args:
text: Input text to clean
Returns:
Cleaned text
"""
return text.strip().replace("\x00", "")
def check_storage_env_vars(storage_name: str) -> None:
"""Check if all required environment variables for storage implementation exist
Args:
storage_name: Storage implementation name
Raises:
ValueError: If required environment variables are missing
"""
from lightrag.kg import STORAGE_ENV_REQUIREMENTS
required_vars = STORAGE_ENV_REQUIREMENTS.get(storage_name, [])
missing_vars = [var for var in required_vars if var not in os.environ]
if missing_vars:
raise ValueError(
f"Storage implementation '{storage_name}' requires the following "
f"environment variables: {', '.join(missing_vars)}"
)

View File

@@ -34,11 +34,13 @@
"cmdk": "^1.0.4",
"graphology": "^0.26.0",
"graphology-generators": "^0.11.2",
"i18next": "^24.2.2",
"lucide-react": "^0.475.0",
"minisearch": "^7.1.2",
"react": "^19.0.0",
"react-dom": "^19.0.0",
"react-dropzone": "^14.3.6",
"react-i18next": "^15.4.1",
"react-markdown": "^9.1.0",
"react-number-format": "^5.4.3",
"react-syntax-highlighter": "^15.6.1",
@@ -765,8 +767,12 @@
"hoist-non-react-statics": ["hoist-non-react-statics@3.3.2", "", { "dependencies": { "react-is": "^16.7.0" } }, "sha512-/gGivxi8JPKWNm/W0jSmzcMPpfpPLc3dY/6GxhX2hQ9iGj3aDfklV4ET7NjKpSinLpJ5vafa9iiGIEZg10SfBw=="],
"html-parse-stringify": ["html-parse-stringify@3.0.1", "", { "dependencies": { "void-elements": "3.1.0" } }, "sha512-KknJ50kTInJ7qIScF3jeaFRpMpE8/lfiTdzf/twXyPBLAGrLRTmkz3AdTnKeh40X8k9L2fdYwEp/42WGXIRGcg=="],
"html-url-attributes": ["html-url-attributes@3.0.1", "", {}, "sha512-ol6UPyBWqsrO6EJySPz2O7ZSr856WDrEzM5zMqp+FJJLGMW35cLYmmZnl0vztAZxRUoNZJFTCohfjuIJ8I4QBQ=="],
"i18next": ["i18next@24.2.2", "", { "dependencies": { "@babel/runtime": "^7.23.2" }, "peerDependencies": { "typescript": "^5" }, "optionalPeers": ["typescript"] }, "sha512-NE6i86lBCKRYZa5TaUDkU5S4HFgLIEJRLr3Whf2psgaxBleQ2LC1YW1Vc+SCgkAW7VEzndT6al6+CzegSUHcTQ=="],
"ignore": ["ignore@5.3.2", "", {}, "sha512-hsBTNUqQTDwkWtcdYI2i06Y/nUBEsNEDJKjWdigLvegy8kDuJAS8uRlpkkcQpyEXL0Z/pjDy5HBmMjRCJ2gq+g=="],
"import-fresh": ["import-fresh@3.3.1", "", { "dependencies": { "parent-module": "^1.0.0", "resolve-from": "^4.0.0" } }, "sha512-TR3KfrTZTYLPB6jUjfx6MF9WcWrHL9su5TObK4ZkYgBdWKPOFoSoQIdEuTuR82pmtxH2spWG9h6etwfr1pLBqQ=="],
@@ -1093,6 +1099,8 @@
"react-dropzone": ["react-dropzone@14.3.6", "", { "dependencies": { "attr-accept": "^2.2.4", "file-selector": "^2.1.0", "prop-types": "^15.8.1" }, "peerDependencies": { "react": ">= 16.8 || 18.0.0" } }, "sha512-U792j+x0rcwH/U/Slv/OBNU/LGFYbDLHKKiJoPhNaOianayZevCt4Y5S0CraPssH/6/wT6xhKDfzdXUgCBS0HQ=="],
"react-i18next": ["react-i18next@15.4.1", "", { "dependencies": { "@babel/runtime": "^7.25.0", "html-parse-stringify": "^3.0.1" }, "peerDependencies": { "i18next": ">= 23.2.3", "react": ">= 16.8.0" } }, "sha512-ahGab+IaSgZmNPYXdV1n+OYky95TGpFwnKRflX/16dY04DsYYKHtVLjeny7sBSCREEcoMbAgSkFiGLF5g5Oofw=="],
"react-is": ["react-is@16.13.1", "", {}, "sha512-24e6ynE2H+OKt4kqsOvNd8kBpV65zoxbA4BVsEOB3ARVWQki/DHzaUoC5KuON/BiccDaCCTZBuOcfZs70kR8bQ=="],
"react-markdown": ["react-markdown@9.1.0", "", { "dependencies": { "@types/hast": "^3.0.0", "@types/mdast": "^4.0.0", "devlop": "^1.0.0", "hast-util-to-jsx-runtime": "^2.0.0", "html-url-attributes": "^3.0.0", "mdast-util-to-hast": "^13.0.0", "remark-parse": "^11.0.0", "remark-rehype": "^11.0.0", "unified": "^11.0.0", "unist-util-visit": "^5.0.0", "vfile": "^6.0.0" }, "peerDependencies": { "@types/react": ">=18", "react": ">=18" } }, "sha512-xaijuJB0kzGiUdG7nc2MOMDUDBWPyGAjZtUrow9XxUeua8IqeP+VlIfAZ3bphpcLTnSZXz6z9jcVC/TCwbfgdw=="],
@@ -1271,6 +1279,8 @@
"vite": ["vite@6.1.1", "", { "dependencies": { "esbuild": "^0.24.2", "postcss": "^8.5.2", "rollup": "^4.30.1" }, "optionalDependencies": { "fsevents": "~2.3.3" }, "peerDependencies": { "@types/node": "^18.0.0 || ^20.0.0 || >=22.0.0", "jiti": ">=1.21.0", "less": "*", "lightningcss": "^1.21.0", "sass": "*", "sass-embedded": "*", "stylus": "*", "sugarss": "*", "terser": "^5.16.0", "tsx": "^4.8.1", "yaml": "^2.4.2" }, "optionalPeers": ["@types/node", "jiti", "less", "lightningcss", "sass", "sass-embedded", "stylus", "sugarss", "terser", "tsx", "yaml"], "bin": { "vite": "bin/vite.js" } }, "sha512-4GgM54XrwRfrOp297aIYspIti66k56v16ZnqHvrIM7mG+HjDlAwS7p+Srr7J6fGvEdOJ5JcQ/D9T7HhtdXDTzA=="],
"void-elements": ["void-elements@3.1.0", "", {}, "sha512-Dhxzh5HZuiHQhbvTW9AMetFfBHDMYpo23Uo9btPXgdYP+3T5S+p+jgNy7spra+veYhBP2dCSgxR/i2Y02h5/6w=="],
"which": ["which@2.0.2", "", { "dependencies": { "isexe": "^2.0.0" }, "bin": { "node-which": "./bin/node-which" } }, "sha512-BLI3Tl1TW3Pvl70l3yq3Y64i+awpwXqsGBYWkkqMtnbXgrMD+yj7rhW0kuEDxzJaYXGjEW5ogapKNMEKNMjibA=="],
"which-boxed-primitive": ["which-boxed-primitive@1.1.1", "", { "dependencies": { "is-bigint": "^1.1.0", "is-boolean-object": "^1.2.1", "is-number-object": "^1.1.1", "is-string": "^1.1.1", "is-symbol": "^1.1.1" } }, "sha512-TbX3mj8n0odCBFVlY8AxkqcHASw3L60jIuF8jFP78az3C2YhmGvqbHBpAjTRH2/xqYunrJ9g1jSyjCjpoWzIAA=="],

View File

@@ -43,11 +43,13 @@
"cmdk": "^1.0.4",
"graphology": "^0.26.0",
"graphology-generators": "^0.11.2",
"i18next": "^24.2.2",
"lucide-react": "^0.475.0",
"minisearch": "^7.1.2",
"react": "^19.0.0",
"react-dom": "^19.0.0",
"react-dropzone": "^14.3.6",
"react-i18next": "^15.4.1",
"react-markdown": "^9.1.0",
"react-number-format": "^5.4.3",
"react-syntax-highlighter": "^15.6.1",

View File

@@ -3,6 +3,7 @@ import useTheme from '@/hooks/useTheme'
import { MoonIcon, SunIcon } from 'lucide-react'
import { useCallback } from 'react'
import { controlButtonVariant } from '@/lib/constants'
import { useTranslation } from 'react-i18next'
/**
* Component that toggles the theme between light and dark.
@@ -11,13 +12,14 @@ export default function ThemeToggle() {
const { theme, setTheme } = useTheme()
const setLight = useCallback(() => setTheme('light'), [setTheme])
const setDark = useCallback(() => setTheme('dark'), [setTheme])
const { t } = useTranslation()
if (theme === 'dark') {
return (
<Button
onClick={setLight}
variant={controlButtonVariant}
tooltip="Switch to light theme"
tooltip={t('header.themeToggle.switchToLight')}
size="icon"
side="bottom"
>
@@ -29,7 +31,7 @@ export default function ThemeToggle() {
<Button
onClick={setDark}
variant={controlButtonVariant}
tooltip="Switch to dark theme"
tooltip={t('header.themeToggle.switchToDark')}
size="icon"
side="bottom"
>

View File

@@ -13,38 +13,40 @@ import { errorMessage } from '@/lib/utils'
import { clearDocuments } from '@/api/lightrag'
import { EraserIcon } from 'lucide-react'
import { useTranslation } from 'react-i18next'
export default function ClearDocumentsDialog() {
const { t } = useTranslation()
const [open, setOpen] = useState(false)
const handleClear = useCallback(async () => {
try {
const result = await clearDocuments()
if (result.status === 'success') {
toast.success('Documents cleared successfully')
toast.success(t('documentPanel.clearDocuments.success'))
setOpen(false)
} else {
toast.error(`Clear Documents Failed:\n${result.message}`)
toast.error(t('documentPanel.clearDocuments.failed', { message: result.message }))
}
} catch (err) {
toast.error('Clear Documents Failed:\n' + errorMessage(err))
toast.error(t('documentPanel.clearDocuments.error', { error: errorMessage(err) }))
}
}, [setOpen])
return (
<Dialog open={open} onOpenChange={setOpen}>
<DialogTrigger asChild>
<Button variant="outline" side="bottom" tooltip='Clear documents' size="sm">
<EraserIcon/> Clear
<Button variant="outline" side="bottom" tooltip={t('documentPanel.clearDocuments.tooltip')} size="sm">
<EraserIcon/> {t('documentPanel.clearDocuments.button')}
</Button>
</DialogTrigger>
<DialogContent className="sm:max-w-xl" onCloseAutoFocus={(e) => e.preventDefault()}>
<DialogHeader>
<DialogTitle>Clear documents</DialogTitle>
<DialogDescription>Do you really want to clear all documents?</DialogDescription>
<DialogTitle>{t('documentPanel.clearDocuments.title')}</DialogTitle>
<DialogDescription>{t('documentPanel.clearDocuments.confirm')}</DialogDescription>
</DialogHeader>
<Button variant="destructive" onClick={handleClear}>
YES
{t('documentPanel.clearDocuments.confirmButton')}
</Button>
</DialogContent>
</Dialog>

View File

@@ -14,8 +14,10 @@ import { errorMessage } from '@/lib/utils'
import { uploadDocument } from '@/api/lightrag'
import { UploadIcon } from 'lucide-react'
import { useTranslation } from 'react-i18next'
export default function UploadDocumentsDialog() {
const { t } = useTranslation()
const [open, setOpen] = useState(false)
const [isUploading, setIsUploading] = useState(false)
const [progresses, setProgresses] = useState<Record<string, number>>({})
@@ -29,24 +31,24 @@ export default function UploadDocumentsDialog() {
filesToUpload.map(async (file) => {
try {
const result = await uploadDocument(file, (percentCompleted: number) => {
console.debug(`Uploading ${file.name}: ${percentCompleted}%`)
console.debug(t('documentPanel.uploadDocuments.uploading', { name: file.name, percent: percentCompleted }))
setProgresses((pre) => ({
...pre,
[file.name]: percentCompleted
}))
})
if (result.status === 'success') {
toast.success(`Upload Success:\n${file.name} uploaded successfully`)
toast.success(t('documentPanel.uploadDocuments.success', { name: file.name }))
} else {
toast.error(`Upload Failed:\n${file.name}\n${result.message}`)
toast.error(t('documentPanel.uploadDocuments.failed', { name: file.name, message: result.message }))
}
} catch (err) {
toast.error(`Upload Failed:\n${file.name}\n${errorMessage(err)}`)
toast.error(t('documentPanel.uploadDocuments.error', { name: file.name, error: errorMessage(err) }))
}
})
)
} catch (err) {
toast.error('Upload Failed\n' + errorMessage(err))
toast.error(t('documentPanel.uploadDocuments.generalError', { error: errorMessage(err) }))
} finally {
setIsUploading(false)
// setOpen(false)
@@ -66,21 +68,21 @@ export default function UploadDocumentsDialog() {
}}
>
<DialogTrigger asChild>
<Button variant="default" side="bottom" tooltip="Upload documents" size="sm">
<UploadIcon /> Upload
<Button variant="default" side="bottom" tooltip={t('documentPanel.uploadDocuments.tooltip')} size="sm">
<UploadIcon /> {t('documentPanel.uploadDocuments.button')}
</Button>
</DialogTrigger>
<DialogContent className="sm:max-w-xl" onCloseAutoFocus={(e) => e.preventDefault()}>
<DialogHeader>
<DialogTitle>Upload documents</DialogTitle>
<DialogTitle>{t('documentPanel.uploadDocuments.title')}</DialogTitle>
<DialogDescription>
Drag and drop your documents here or click to browse.
{t('documentPanel.uploadDocuments.description')}
</DialogDescription>
</DialogHeader>
<FileUploader
maxFileCount={Infinity}
maxSize={200 * 1024 * 1024}
description="supported types: TXT, MD, DOCX, PDF, PPTX, RTF, ODT, EPUB, HTML, HTM, TEX, JSON, XML, YAML, YML, CSV, LOG, CONF, INI, PROPERTIES, SQL, BAT, SH, C, CPP, PY, JAVA, JS, TS, SWIFT, GO, RB, PHP, CSS, SCSS, LESS"
description={t('documentPanel.uploadDocuments.fileTypes')}
onUpload={handleDocumentsUpload}
progresses={progresses}
disabled={isUploading}

View File

@@ -2,21 +2,23 @@ import { useFullScreen } from '@react-sigma/core'
import { MaximizeIcon, MinimizeIcon } from 'lucide-react'
import { controlButtonVariant } from '@/lib/constants'
import Button from '@/components/ui/Button'
import { useTranslation } from 'react-i18next'
/**
* Component that toggles full screen mode.
*/
const FullScreenControl = () => {
const { isFullScreen, toggle } = useFullScreen()
const { t } = useTranslation()
return (
<>
{isFullScreen ? (
<Button variant={controlButtonVariant} onClick={toggle} tooltip="Windowed" size="icon">
<Button variant={controlButtonVariant} onClick={toggle} tooltip={t('graphPanel.sideBar.fullScreenControl.windowed')} size="icon">
<MinimizeIcon />
</Button>
) : (
<Button variant={controlButtonVariant} onClick={toggle} tooltip="Full Screen" size="icon">
<Button variant={controlButtonVariant} onClick={toggle} tooltip={t('graphPanel.sideBar.fullScreenControl.fullScreen')} size="icon">
<MaximizeIcon />
</Button>
)}

View File

@@ -5,6 +5,7 @@ import { useSettingsStore } from '@/stores/settings'
import { useGraphStore } from '@/stores/graph'
import { labelListLimit } from '@/lib/constants'
import MiniSearch from 'minisearch'
import { useTranslation } from 'react-i18next'
const lastGraph: any = {
graph: null,
@@ -13,6 +14,7 @@ const lastGraph: any = {
}
const GraphLabels = () => {
const { t } = useTranslation()
const label = useSettingsStore.use.queryLabel()
const graph = useGraphStore.use.sigmaGraph()
@@ -69,7 +71,7 @@ const GraphLabels = () => {
return result.length <= labelListLimit
? result
: [...result.slice(0, labelListLimit), `And ${result.length - labelListLimit} others`]
: [...result.slice(0, labelListLimit), t('graphLabels.andOthers', { count: result.length - labelListLimit })]
},
[getSearchEngine]
)
@@ -84,14 +86,14 @@ const GraphLabels = () => {
className="ml-2"
triggerClassName="max-h-8"
searchInputClassName="max-h-8"
triggerTooltip="Select query label"
triggerTooltip={t('graphPanel.graphLabels.selectTooltip')}
fetcher={fetchData}
renderOption={(item) => <div>{item}</div>}
getOptionValue={(item) => item}
getDisplayValue={(item) => <div>{item}</div>}
notFound={<div className="py-6 text-center text-sm">No labels found</div>}
label="Label"
placeholder="Search labels..."
label={t('graphPanel.graphLabels.label')}
placeholder={t('graphPanel.graphLabels.placeholder')}
value={label !== null ? label : ''}
onChange={setQueryLabel}
/>

View File

@@ -9,6 +9,7 @@ import { AsyncSearch } from '@/components/ui/AsyncSearch'
import { searchResultLimit } from '@/lib/constants'
import { useGraphStore } from '@/stores/graph'
import MiniSearch from 'minisearch'
import { useTranslation } from 'react-i18next'
interface OptionItem {
id: string
@@ -44,6 +45,7 @@ export const GraphSearchInput = ({
onFocus?: GraphSearchInputProps['onFocus']
value?: GraphSearchInputProps['value']
}) => {
const { t } = useTranslation()
const graph = useGraphStore.use.sigmaGraph()
const searchEngine = useMemo(() => {
@@ -97,7 +99,7 @@ export const GraphSearchInput = ({
{
type: 'message',
id: messageId,
message: `And ${result.length - searchResultLimit} others`
message: t('graphPanel.search.message', { count: result.length - searchResultLimit })
}
]
},
@@ -118,7 +120,7 @@ export const GraphSearchInput = ({
if (id !== messageId && onFocus) onFocus(id ? { id, type: 'nodes' } : null)
}}
label={'item'}
placeholder="Search nodes..."
placeholder={t('graphPanel.search.placeholder')}
/>
)
}

View File

@@ -16,6 +16,7 @@ import { controlButtonVariant } from '@/lib/constants'
import { useSettingsStore } from '@/stores/settings'
import { GripIcon, PlayIcon, PauseIcon } from 'lucide-react'
import { useTranslation } from 'react-i18next'
type LayoutName =
| 'Circular'
@@ -28,6 +29,7 @@ type LayoutName =
const WorkerLayoutControl = ({ layout, autoRunFor }: WorkerLayoutControlProps) => {
const sigma = useSigma()
const { stop, start, isRunning } = layout
const { t } = useTranslation()
/**
* Init component when Sigma or component settings change.
@@ -61,7 +63,7 @@ const WorkerLayoutControl = ({ layout, autoRunFor }: WorkerLayoutControlProps) =
<Button
size="icon"
onClick={() => (isRunning ? stop() : start())}
tooltip={isRunning ? 'Stop the layout animation' : 'Start the layout animation'}
tooltip={isRunning ? t('graphPanel.sideBar.layoutsControl.stopAnimation') : t('graphPanel.sideBar.layoutsControl.startAnimation')}
variant={controlButtonVariant}
>
{isRunning ? <PauseIcon /> : <PlayIcon />}
@@ -74,6 +76,7 @@ const WorkerLayoutControl = ({ layout, autoRunFor }: WorkerLayoutControlProps) =
*/
const LayoutsControl = () => {
const sigma = useSigma()
const { t } = useTranslation()
const [layout, setLayout] = useState<LayoutName>('Circular')
const [opened, setOpened] = useState<boolean>(false)
@@ -149,7 +152,7 @@ const LayoutsControl = () => {
size="icon"
variant={controlButtonVariant}
onClick={() => setOpened((e: boolean) => !e)}
tooltip="Layout Graph"
tooltip={t('graphPanel.sideBar.layoutsControl.layoutGraph')}
>
<GripIcon />
</Button>
@@ -166,7 +169,7 @@ const LayoutsControl = () => {
key={name}
className="cursor-pointer text-xs"
>
{name}
{t(`graphPanel.sideBar.layoutsControl.layouts.${name}`)}
</CommandItem>
))}
</CommandGroup>

View File

@@ -2,6 +2,7 @@ import { useEffect, useState } from 'react'
import { useGraphStore, RawNodeType, RawEdgeType } from '@/stores/graph'
import Text from '@/components/ui/Text'
import useLightragGraph from '@/hooks/useLightragGraph'
import { useTranslation } from 'react-i18next'
/**
* Component that view properties of elements in graph.
@@ -147,21 +148,22 @@ const PropertyRow = ({
}
const NodePropertiesView = ({ node }: { node: NodeType }) => {
const { t } = useTranslation()
return (
<div className="flex flex-col gap-2">
<label className="text-md pl-1 font-bold tracking-wide text-sky-300">Node</label>
<label className="text-md pl-1 font-bold tracking-wide text-sky-300">{t('graphPanel.propertiesView.node.title')}</label>
<div className="bg-primary/5 max-h-96 overflow-auto rounded p-1">
<PropertyRow name={'Id'} value={node.id} />
<PropertyRow name={t('graphPanel.propertiesView.node.id')} value={node.id} />
<PropertyRow
name={'Labels'}
name={t('graphPanel.propertiesView.node.labels')}
value={node.labels.join(', ')}
onClick={() => {
useGraphStore.getState().setSelectedNode(node.id, true)
}}
/>
<PropertyRow name={'Degree'} value={node.degree} />
<PropertyRow name={t('graphPanel.propertiesView.node.degree')} value={node.degree} />
</div>
<label className="text-md pl-1 font-bold tracking-wide text-yellow-400/90">Properties</label>
<label className="text-md pl-1 font-bold tracking-wide text-yellow-400/90">{t('graphPanel.propertiesView.node.properties')}</label>
<div className="bg-primary/5 max-h-96 overflow-auto rounded p-1">
{Object.keys(node.properties)
.sort()
@@ -172,7 +174,7 @@ const NodePropertiesView = ({ node }: { node: NodeType }) => {
{node.relationships.length > 0 && (
<>
<label className="text-md pl-1 font-bold tracking-wide text-teal-600/90">
Relationships
{t('graphPanel.propertiesView.node.relationships')}
</label>
<div className="bg-primary/5 max-h-96 overflow-auto rounded p-1">
{node.relationships.map(({ type, id, label }) => {
@@ -195,28 +197,29 @@ const NodePropertiesView = ({ node }: { node: NodeType }) => {
}
const EdgePropertiesView = ({ edge }: { edge: EdgeType }) => {
const { t } = useTranslation()
return (
<div className="flex flex-col gap-2">
<label className="text-md pl-1 font-bold tracking-wide text-teal-600">Relationship</label>
<label className="text-md pl-1 font-bold tracking-wide text-teal-600">{t('graphPanel.propertiesView.edge.title')}</label>
<div className="bg-primary/5 max-h-96 overflow-auto rounded p-1">
<PropertyRow name={'Id'} value={edge.id} />
{edge.type && <PropertyRow name={'Type'} value={edge.type} />}
<PropertyRow name={t('graphPanel.propertiesView.edge.id')} value={edge.id} />
{edge.type && <PropertyRow name={t('graphPanel.propertiesView.edge.type')} value={edge.type} />}
<PropertyRow
name={'Source'}
name={t('graphPanel.propertiesView.edge.source')}
value={edge.sourceNode ? edge.sourceNode.labels.join(', ') : edge.source}
onClick={() => {
useGraphStore.getState().setSelectedNode(edge.source, true)
}}
/>
<PropertyRow
name={'Target'}
name={t('graphPanel.propertiesView.edge.target')}
value={edge.targetNode ? edge.targetNode.labels.join(', ') : edge.target}
onClick={() => {
useGraphStore.getState().setSelectedNode(edge.target, true)
}}
/>
</div>
<label className="text-md pl-1 font-bold tracking-wide text-yellow-400/90">Properties</label>
<label className="text-md pl-1 font-bold tracking-wide text-yellow-400/90">{t('graphPanel.propertiesView.edge.properties')}</label>
<div className="bg-primary/5 max-h-96 overflow-auto rounded p-1">
{Object.keys(edge.properties)
.sort()

View File

@@ -10,6 +10,7 @@ import { useSettingsStore } from '@/stores/settings'
import { useBackendState } from '@/stores/state'
import { SettingsIcon } from 'lucide-react'
import { useTranslation } from "react-i18next";
/**
* Component that displays a checkbox with a label.
@@ -204,10 +205,12 @@ export default function Settings() {
[setTempApiKey]
)
const { t } = useTranslation();
return (
<Popover open={opened} onOpenChange={setOpened}>
<PopoverTrigger asChild>
<Button variant={controlButtonVariant} tooltip="Settings" size="icon">
<Button variant={controlButtonVariant} tooltip={t("graphPanel.sideBar.settings.settings")} size="icon">
<SettingsIcon />
</Button>
</PopoverTrigger>
@@ -221,7 +224,7 @@ export default function Settings() {
<LabeledCheckBox
checked={enableHealthCheck}
onCheckedChange={setEnableHealthCheck}
label="Health Check"
label={t("graphPanel.sideBar.settings.healthCheck")}
/>
<Separator />
@@ -229,12 +232,12 @@ export default function Settings() {
<LabeledCheckBox
checked={showPropertyPanel}
onCheckedChange={setShowPropertyPanel}
label="Show Property Panel"
label={t("graphPanel.sideBar.settings.showPropertyPanel")}
/>
<LabeledCheckBox
checked={showNodeSearchBar}
onCheckedChange={setShowNodeSearchBar}
label="Show Search Bar"
label={t("graphPanel.sideBar.settings.showSearchBar")}
/>
<Separator />
@@ -242,12 +245,12 @@ export default function Settings() {
<LabeledCheckBox
checked={showNodeLabel}
onCheckedChange={setShowNodeLabel}
label="Show Node Label"
label={t("graphPanel.sideBar.settings.showNodeLabel")}
/>
<LabeledCheckBox
checked={enableNodeDrag}
onCheckedChange={setEnableNodeDrag}
label="Node Draggable"
label={t("graphPanel.sideBar.settings.nodeDraggable")}
/>
<Separator />
@@ -255,51 +258,50 @@ export default function Settings() {
<LabeledCheckBox
checked={showEdgeLabel}
onCheckedChange={setShowEdgeLabel}
label="Show Edge Label"
label={t("graphPanel.sideBar.settings.showEdgeLabel")}
/>
<LabeledCheckBox
checked={enableHideUnselectedEdges}
onCheckedChange={setEnableHideUnselectedEdges}
label="Hide Unselected Edges"
label={t("graphPanel.sideBar.settings.hideUnselectedEdges")}
/>
<LabeledCheckBox
checked={enableEdgeEvents}
onCheckedChange={setEnableEdgeEvents}
label="Edge Events"
label={t("graphPanel.sideBar.settings.edgeEvents")}
/>
<Separator />
<LabeledNumberInput
label="Max Query Depth"
label={t("graphPanel.sideBar.settings.maxQueryDepth")}
min={1}
value={graphQueryMaxDepth}
onEditFinished={setGraphQueryMaxDepth}
/>
<LabeledNumberInput
label="Minimum Degree"
label={t("graphPanel.sideBar.settings.minDegree")}
min={0}
value={graphMinDegree}
onEditFinished={setGraphMinDegree}
/>
<LabeledNumberInput
label="Max Layout Iterations"
label={t("graphPanel.sideBar.settings.maxLayoutIterations")}
min={1}
max={20}
value={graphLayoutMaxIterations}
onEditFinished={setGraphLayoutMaxIterations}
/>
<Separator />
<div className="flex flex-col gap-2">
<label className="text-sm font-medium">API Key</label>
<label className="text-sm font-medium">{t("graphPanel.sideBar.settings.apiKey")}</label>
<form className="flex h-6 gap-2" onSubmit={(e) => e.preventDefault()}>
<div className="w-0 flex-1">
<Input
type="password"
value={tempApiKey}
onChange={handleTempApiKeyChange}
placeholder="Enter your API key"
placeholder={t("graphPanel.sideBar.settings.enterYourAPIkey")}
className="max-h-full w-full min-w-0"
autoComplete="off"
/>
@@ -310,7 +312,7 @@ export default function Settings() {
size="sm"
className="max-h-full shrink-0"
>
Save
{t("graphPanel.sideBar.settings.save")}
</Button>
</form>
</div>

View File

@@ -1,58 +1,60 @@
import { LightragStatus } from '@/api/lightrag'
import { useTranslation } from 'react-i18next'
const StatusCard = ({ status }: { status: LightragStatus | null }) => {
const { t } = useTranslation()
if (!status) {
return <div className="text-muted-foreground text-sm">Status information unavailable</div>
return <div className="text-muted-foreground text-sm">{t('graphPanel.statusCard.unavailable')}</div>
}
return (
<div className="min-w-[300px] space-y-3 text-sm">
<div className="space-y-1">
<h4 className="font-medium">Storage Info</h4>
<h4 className="font-medium">{t('graphPanel.statusCard.storageInfo')}</h4>
<div className="text-muted-foreground grid grid-cols-2 gap-1">
<span>Working Directory:</span>
<span>{t('graphPanel.statusCard.workingDirectory')}:</span>
<span className="truncate">{status.working_directory}</span>
<span>Input Directory:</span>
<span>{t('graphPanel.statusCard.inputDirectory')}:</span>
<span className="truncate">{status.input_directory}</span>
</div>
</div>
<div className="space-y-1">
<h4 className="font-medium">LLM Configuration</h4>
<h4 className="font-medium">{t('graphPanel.statusCard.llmConfig')}</h4>
<div className="text-muted-foreground grid grid-cols-2 gap-1">
<span>LLM Binding:</span>
<span>{t('graphPanel.statusCard.llmBinding')}:</span>
<span>{status.configuration.llm_binding}</span>
<span>LLM Binding Host:</span>
<span>{t('graphPanel.statusCard.llmBindingHost')}:</span>
<span>{status.configuration.llm_binding_host}</span>
<span>LLM Model:</span>
<span>{t('graphPanel.statusCard.llmModel')}:</span>
<span>{status.configuration.llm_model}</span>
<span>Max Tokens:</span>
<span>{t('graphPanel.statusCard.maxTokens')}:</span>
<span>{status.configuration.max_tokens}</span>
</div>
</div>
<div className="space-y-1">
<h4 className="font-medium">Embedding Configuration</h4>
<h4 className="font-medium">{t('graphPanel.statusCard.embeddingConfig')}</h4>
<div className="text-muted-foreground grid grid-cols-2 gap-1">
<span>Embedding Binding:</span>
<span>{t('graphPanel.statusCard.embeddingBinding')}:</span>
<span>{status.configuration.embedding_binding}</span>
<span>Embedding Binding Host:</span>
<span>{t('graphPanel.statusCard.embeddingBindingHost')}:</span>
<span>{status.configuration.embedding_binding_host}</span>
<span>Embedding Model:</span>
<span>{t('graphPanel.statusCard.embeddingModel')}:</span>
<span>{status.configuration.embedding_model}</span>
</div>
</div>
<div className="space-y-1">
<h4 className="font-medium">Storage Configuration</h4>
<h4 className="font-medium">{t('graphPanel.statusCard.storageConfig')}</h4>
<div className="text-muted-foreground grid grid-cols-2 gap-1">
<span>KV Storage:</span>
<span>{t('graphPanel.statusCard.kvStorage')}:</span>
<span>{status.configuration.kv_storage}</span>
<span>Doc Status Storage:</span>
<span>{t('graphPanel.statusCard.docStatusStorage')}:</span>
<span>{status.configuration.doc_status_storage}</span>
<span>Graph Storage:</span>
<span>{t('graphPanel.statusCard.graphStorage')}:</span>
<span>{status.configuration.graph_storage}</span>
<span>Vector Storage:</span>
<span>{t('graphPanel.statusCard.vectorStorage')}:</span>
<span>{status.configuration.vector_storage}</span>
</div>
</div>

View File

@@ -3,8 +3,10 @@ import { useBackendState } from '@/stores/state'
import { useEffect, useState } from 'react'
import { Popover, PopoverContent, PopoverTrigger } from '@/components/ui/Popover'
import StatusCard from '@/components/graph/StatusCard'
import { useTranslation } from 'react-i18next'
const StatusIndicator = () => {
const { t } = useTranslation()
const health = useBackendState.use.health()
const lastCheckTime = useBackendState.use.lastCheckTime()
const status = useBackendState.use.status()
@@ -33,7 +35,7 @@ const StatusIndicator = () => {
)}
/>
<span className="text-muted-foreground text-xs">
{health ? 'Connected' : 'Disconnected'}
{health ? t('graphPanel.statusIndicator.connected') : t('graphPanel.statusIndicator.disconnected')}
</span>
</div>
</PopoverTrigger>

View File

@@ -3,12 +3,14 @@ import { useCallback } from 'react'
import Button from '@/components/ui/Button'
import { ZoomInIcon, ZoomOutIcon, FullscreenIcon } from 'lucide-react'
import { controlButtonVariant } from '@/lib/constants'
import { useTranslation } from "react-i18next";
/**
* Component that provides zoom controls for the graph viewer.
*/
const ZoomControl = () => {
const { zoomIn, zoomOut, reset } = useCamera({ duration: 200, factor: 1.5 })
const { t } = useTranslation();
const handleZoomIn = useCallback(() => zoomIn(), [zoomIn])
const handleZoomOut = useCallback(() => zoomOut(), [zoomOut])
@@ -16,16 +18,16 @@ const ZoomControl = () => {
return (
<>
<Button variant={controlButtonVariant} onClick={handleZoomIn} tooltip="Zoom In" size="icon">
<Button variant={controlButtonVariant} onClick={handleZoomIn} tooltip={t("graphPanel.sideBar.zoomControl.zoomIn")} size="icon">
<ZoomInIcon />
</Button>
<Button variant={controlButtonVariant} onClick={handleZoomOut} tooltip="Zoom Out" size="icon">
<Button variant={controlButtonVariant} onClick={handleZoomOut} tooltip={t("graphPanel.sideBar.zoomControl.zoomOut")} size="icon">
<ZoomOutIcon />
</Button>
<Button
variant={controlButtonVariant}
onClick={handleResetZoom}
tooltip="Reset Zoom"
tooltip={t("graphPanel.sideBar.zoomControl.resetZoom")}
size="icon"
>
<FullscreenIcon />

View File

@@ -15,18 +15,21 @@ import { Prism as SyntaxHighlighter } from 'react-syntax-highlighter'
import { oneLight, oneDark } from 'react-syntax-highlighter/dist/cjs/styles/prism'
import { LoaderIcon, CopyIcon } from 'lucide-react'
import { useTranslation } from 'react-i18next'
export type MessageWithError = Message & {
isError?: boolean
}
export const ChatMessage = ({ message }: { message: MessageWithError }) => {
const { t } = useTranslation()
const handleCopyMarkdown = useCallback(async () => {
if (message.content) {
try {
await navigator.clipboard.writeText(message.content)
} catch (err) {
console.error('Failed to copy:', err)
console.error(t('chat.copyError'), err)
}
}
}, [message])
@@ -57,7 +60,7 @@ export const ChatMessage = ({ message }: { message: MessageWithError }) => {
<Button
onClick={handleCopyMarkdown}
className="absolute right-0 bottom-0 size-6 rounded-md opacity-20 transition-opacity hover:opacity-100"
tooltip="Copy to clipboard"
tooltip={t('retrievePanel.chatMessage.copyTooltip')}
variant="default"
size="icon"
>

View File

@@ -14,8 +14,10 @@ import {
SelectValue
} from '@/components/ui/Select'
import { useSettingsStore } from '@/stores/settings'
import { useTranslation } from 'react-i18next'
export default function QuerySettings() {
const { t } = useTranslation()
const querySettings = useSettingsStore((state) => state.querySettings)
const handleChange = useCallback((key: keyof QueryRequest, value: any) => {
@@ -25,8 +27,8 @@ export default function QuerySettings() {
return (
<Card className="flex shrink-0 flex-col">
<CardHeader className="px-4 pt-4 pb-2">
<CardTitle>Parameters</CardTitle>
<CardDescription>Configure your query parameters</CardDescription>
<CardTitle>{t('retrievePanel.querySettings.parametersTitle')}</CardTitle>
<CardDescription>{t('retrievePanel.querySettings.parametersDescription')}</CardDescription>
</CardHeader>
<CardContent className="m-0 flex grow flex-col p-0 text-xs">
<div className="relative size-full">
@@ -35,8 +37,8 @@ export default function QuerySettings() {
<>
<Text
className="ml-1"
text="Query Mode"
tooltip="Select the retrieval strategy:\n• Naive: Basic search without advanced techniques\n• Local: Context-dependent information retrieval\n• Global: Utilizes global knowledge base\n• Hybrid: Combines local and global retrieval\n• Mix: Integrates knowledge graph with vector retrieval"
text={t('retrievePanel.querySettings.queryMode')}
tooltip={t('retrievePanel.querySettings.queryModeTooltip')}
side="left"
/>
<Select
@@ -48,11 +50,11 @@ export default function QuerySettings() {
</SelectTrigger>
<SelectContent>
<SelectGroup>
<SelectItem value="naive">Naive</SelectItem>
<SelectItem value="local">Local</SelectItem>
<SelectItem value="global">Global</SelectItem>
<SelectItem value="hybrid">Hybrid</SelectItem>
<SelectItem value="mix">Mix</SelectItem>
<SelectItem value="naive">{t('retrievePanel.querySettings.queryModeOptions.naive')}</SelectItem>
<SelectItem value="local">{t('retrievePanel.querySettings.queryModeOptions.local')}</SelectItem>
<SelectItem value="global">{t('retrievePanel.querySettings.queryModeOptions.global')}</SelectItem>
<SelectItem value="hybrid">{t('retrievePanel.querySettings.queryModeOptions.hybrid')}</SelectItem>
<SelectItem value="mix">{t('retrievePanel.querySettings.queryModeOptions.mix')}</SelectItem>
</SelectGroup>
</SelectContent>
</Select>
@@ -62,8 +64,8 @@ export default function QuerySettings() {
<>
<Text
className="ml-1"
text="Response Format"
tooltip="Defines the response format. Examples:\n• Multiple Paragraphs\n• Single Paragraph\n• Bullet Points"
text={t('retrievePanel.querySettings.responseFormat')}
tooltip={t('retrievePanel.querySettings.responseFormatTooltip')}
side="left"
/>
<Select
@@ -75,9 +77,9 @@ export default function QuerySettings() {
</SelectTrigger>
<SelectContent>
<SelectGroup>
<SelectItem value="Multiple Paragraphs">Multiple Paragraphs</SelectItem>
<SelectItem value="Single Paragraph">Single Paragraph</SelectItem>
<SelectItem value="Bullet Points">Bullet Points</SelectItem>
<SelectItem value="Multiple Paragraphs">{t('retrievePanel.querySettings.responseFormatOptions.multipleParagraphs')}</SelectItem>
<SelectItem value="Single Paragraph">{t('retrievePanel.querySettings.responseFormatOptions.singleParagraph')}</SelectItem>
<SelectItem value="Bullet Points">{t('retrievePanel.querySettings.responseFormatOptions.bulletPoints')}</SelectItem>
</SelectGroup>
</SelectContent>
</Select>
@@ -87,8 +89,8 @@ export default function QuerySettings() {
<>
<Text
className="ml-1"
text="Top K Results"
tooltip="Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode"
text={t('retrievePanel.querySettings.topK')}
tooltip={t('retrievePanel.querySettings.topKTooltip')}
side="left"
/>
<NumberInput
@@ -97,7 +99,7 @@ export default function QuerySettings() {
value={querySettings.top_k}
onValueChange={(v) => handleChange('top_k', v)}
min={1}
placeholder="Number of results"
placeholder={t('retrievePanel.querySettings.topKPlaceholder')}
/>
</>
@@ -106,8 +108,8 @@ export default function QuerySettings() {
<>
<Text
className="ml-1"
text="Max Tokens for Text Unit"
tooltip="Maximum number of tokens allowed for each retrieved text chunk"
text={t('retrievePanel.querySettings.maxTokensTextUnit')}
tooltip={t('retrievePanel.querySettings.maxTokensTextUnitTooltip')}
side="left"
/>
<NumberInput
@@ -116,14 +118,14 @@ export default function QuerySettings() {
value={querySettings.max_token_for_text_unit}
onValueChange={(v) => handleChange('max_token_for_text_unit', v)}
min={1}
placeholder="Max tokens for text unit"
placeholder={t('retrievePanel.querySettings.maxTokensTextUnit')}
/>
</>
<>
<Text
text="Max Tokens for Global Context"
tooltip="Maximum number of tokens allocated for relationship descriptions in global retrieval"
text={t('retrievePanel.querySettings.maxTokensGlobalContext')}
tooltip={t('retrievePanel.querySettings.maxTokensGlobalContextTooltip')}
side="left"
/>
<NumberInput
@@ -132,15 +134,15 @@ export default function QuerySettings() {
value={querySettings.max_token_for_global_context}
onValueChange={(v) => handleChange('max_token_for_global_context', v)}
min={1}
placeholder="Max tokens for global context"
placeholder={t('retrievePanel.querySettings.maxTokensGlobalContext')}
/>
</>
<>
<Text
className="ml-1"
text="Max Tokens for Local Context"
tooltip="Maximum number of tokens allocated for entity descriptions in local retrieval"
text={t('retrievePanel.querySettings.maxTokensLocalContext')}
tooltip={t('retrievePanel.querySettings.maxTokensLocalContextTooltip')}
side="left"
/>
<NumberInput
@@ -149,7 +151,7 @@ export default function QuerySettings() {
value={querySettings.max_token_for_local_context}
onValueChange={(v) => handleChange('max_token_for_local_context', v)}
min={1}
placeholder="Max tokens for local context"
placeholder={t('retrievePanel.querySettings.maxTokensLocalContext')}
/>
</>
</>
@@ -158,8 +160,8 @@ export default function QuerySettings() {
<>
<Text
className="ml-1"
text="History Turns"
tooltip="Number of complete conversation turns (user-assistant pairs) to consider in the response context"
text={t('retrievePanel.querySettings.historyTurns')}
tooltip={t('retrievePanel.querySettings.historyTurnsTooltip')}
side="left"
/>
<NumberInput
@@ -170,7 +172,7 @@ export default function QuerySettings() {
value={querySettings.history_turns}
onValueChange={(v) => handleChange('history_turns', v)}
min={0}
placeholder="Number of history turns"
placeholder={t('retrievePanel.querySettings.historyTurnsPlaceholder')}
/>
</>
@@ -179,8 +181,8 @@ export default function QuerySettings() {
<>
<Text
className="ml-1"
text="High-Level Keywords"
tooltip="List of high-level keywords to prioritize in retrieval. Separate with commas"
text={t('retrievePanel.querySettings.hlKeywords')}
tooltip={t('retrievePanel.querySettings.hlKeywordsTooltip')}
side="left"
/>
<Input
@@ -194,15 +196,15 @@ export default function QuerySettings() {
.filter((k) => k !== '')
handleChange('hl_keywords', keywords)
}}
placeholder="Enter keywords"
placeholder={t('retrievePanel.querySettings.hlkeywordsPlaceHolder')}
/>
</>
<>
<Text
className="ml-1"
text="Low-Level Keywords"
tooltip="List of low-level keywords to refine retrieval focus. Separate with commas"
text={t('retrievePanel.querySettings.llKeywords')}
tooltip={t('retrievePanel.querySettings.llKeywordsTooltip')}
side="left"
/>
<Input
@@ -216,7 +218,7 @@ export default function QuerySettings() {
.filter((k) => k !== '')
handleChange('ll_keywords', keywords)
}}
placeholder="Enter keywords"
placeholder={t('retrievePanel.querySettings.hlkeywordsPlaceHolder')}
/>
</>
</>
@@ -226,8 +228,8 @@ export default function QuerySettings() {
<div className="flex items-center gap-2">
<Text
className="ml-1"
text="Only Need Context"
tooltip="If True, only returns the retrieved context without generating a response"
text={t('retrievePanel.querySettings.onlyNeedContext')}
tooltip={t('retrievePanel.querySettings.onlyNeedContextTooltip')}
side="left"
/>
<div className="grow" />
@@ -242,8 +244,8 @@ export default function QuerySettings() {
<div className="flex items-center gap-2">
<Text
className="ml-1"
text="Only Need Prompt"
tooltip="If True, only returns the generated prompt without producing a response"
text={t('retrievePanel.querySettings.onlyNeedPrompt')}
tooltip={t('retrievePanel.querySettings.onlyNeedPromptTooltip')}
side="left"
/>
<div className="grow" />
@@ -258,8 +260,8 @@ export default function QuerySettings() {
<div className="flex items-center gap-2">
<Text
className="ml-1"
text="Stream Response"
tooltip="If True, enables streaming output for real-time responses"
text={t('retrievePanel.querySettings.streamResponse')}
tooltip={t('retrievePanel.querySettings.streamResponseTooltip')}
side="left"
/>
<div className="grow" />

View File

@@ -1,4 +1,5 @@
import { useState, useEffect, useCallback } from 'react'
import { useTranslation } from 'react-i18next'
import Button from '@/components/ui/Button'
import {
Table,
@@ -22,6 +23,7 @@ import { useBackendState } from '@/stores/state'
import { RefreshCwIcon } from 'lucide-react'
export default function DocumentManager() {
const { t } = useTranslation()
const health = useBackendState.use.health()
const [docs, setDocs] = useState<DocsStatusesResponse | null>(null)
@@ -44,7 +46,7 @@ export default function DocumentManager() {
setDocs(null)
}
} catch (err) {
toast.error('Failed to load documents\n' + errorMessage(err))
toast.error(t('documentPanel.documentManager.errors.loadFailed', { error: errorMessage(err) }))
}
}, [setDocs])
@@ -57,7 +59,7 @@ export default function DocumentManager() {
const { status } = await scanNewDocuments()
toast.message(status)
} catch (err) {
toast.error('Failed to load documents\n' + errorMessage(err))
toast.error(t('documentPanel.documentManager.errors.scanFailed', { error: errorMessage(err) }))
}
}, [])
@@ -69,7 +71,7 @@ export default function DocumentManager() {
try {
await fetchDocuments()
} catch (err) {
toast.error('Failed to get scan progress\n' + errorMessage(err))
toast.error(t('documentPanel.documentManager.errors.scanProgressFailed', { error: errorMessage(err) }))
}
}, 5000)
return () => clearInterval(interval)
@@ -78,7 +80,7 @@ export default function DocumentManager() {
return (
<Card className="!size-full !rounded-none !border-none">
<CardHeader>
<CardTitle className="text-lg">Document Management</CardTitle>
<CardTitle className="text-lg">{t('documentPanel.documentManager.title')}</CardTitle>
</CardHeader>
<CardContent className="space-y-4">
<div className="flex gap-2">
@@ -86,10 +88,10 @@ export default function DocumentManager() {
variant="outline"
onClick={scanDocuments}
side="bottom"
tooltip="Scan documents"
tooltip={t('documentPanel.documentManager.scanTooltip')}
size="sm"
>
<RefreshCwIcon /> Scan
<RefreshCwIcon /> {t('documentPanel.documentManager.scanButton')}
</Button>
<div className="flex-1" />
<ClearDocumentsDialog />
@@ -98,29 +100,29 @@ export default function DocumentManager() {
<Card>
<CardHeader>
<CardTitle>Uploaded documents</CardTitle>
<CardDescription>view the uploaded documents here</CardDescription>
<CardTitle>{t('documentPanel.documentManager.uploadedTitle')}</CardTitle>
<CardDescription>{t('documentPanel.documentManager.uploadedDescription')}</CardDescription>
</CardHeader>
<CardContent>
{!docs && (
<EmptyCard
title="No documents uploaded"
description="upload documents to see them here"
title={t('documentPanel.documentManager.emptyTitle')}
description={t('documentPanel.documentManager.emptyDescription')}
/>
)}
{docs && (
<Table>
<TableHeader>
<TableRow>
<TableHead>ID</TableHead>
<TableHead>Summary</TableHead>
<TableHead>Status</TableHead>
<TableHead>Length</TableHead>
<TableHead>Chunks</TableHead>
<TableHead>Created</TableHead>
<TableHead>Updated</TableHead>
<TableHead>Metadata</TableHead>
<TableHead>{t('documentPanel.documentManager.columns.id')}</TableHead>
<TableHead>{t('documentPanel.documentManager.columns.summary')}</TableHead>
<TableHead>{t('documentPanel.documentManager.columns.status')}</TableHead>
<TableHead>{t('documentPanel.documentManager.columns.length')}</TableHead>
<TableHead>{t('documentPanel.documentManager.columns.chunks')}</TableHead>
<TableHead>{t('documentPanel.documentManager.columns.created')}</TableHead>
<TableHead>{t('documentPanel.documentManager.columns.updated')}</TableHead>
<TableHead>{t('documentPanel.documentManager.columns.metadata')}</TableHead>
</TableRow>
</TableHeader>
<TableBody className="text-sm">
@@ -137,13 +139,13 @@ export default function DocumentManager() {
</TableCell>
<TableCell>
{status === 'processed' && (
<span className="text-green-600">Completed</span>
<span className="text-green-600">{t('documentPanel.documentManager.status.completed')}</span>
)}
{status === 'processing' && (
<span className="text-blue-600">Processing</span>
<span className="text-blue-600">{t('documentPanel.documentManager.status.processing')}</span>
)}
{status === 'pending' && <span className="text-yellow-600">Pending</span>}
{status === 'failed' && <span className="text-red-600">Failed</span>}
{status === 'pending' && <span className="text-yellow-600">{t('documentPanel.documentManager.status.pending')}</span>}
{status === 'failed' && <span className="text-red-600">{t('documentPanel.documentManager.status.failed')}</span>}
{doc.error && (
<span className="ml-2 text-red-500" title={doc.error}>

View File

@@ -8,8 +8,10 @@ import { useDebounce } from '@/hooks/useDebounce'
import QuerySettings from '@/components/retrieval/QuerySettings'
import { ChatMessage, MessageWithError } from '@/components/retrieval/ChatMessage'
import { EraserIcon, SendIcon } from 'lucide-react'
import { useTranslation } from 'react-i18next'
export default function RetrievalTesting() {
const { t } = useTranslation()
const [messages, setMessages] = useState<MessageWithError[]>(
() => useSettingsStore.getState().retrievalHistory || []
)
@@ -89,7 +91,7 @@ export default function RetrievalTesting() {
}
} catch (err) {
// Handle error
updateAssistantMessage(`Error: Failed to get response\n${errorMessage(err)}`, true)
updateAssistantMessage(`${t('retrievePanel.retrieval.error')}\n${errorMessage(err)}`, true)
} finally {
// Clear loading and add messages to state
setIsLoading(false)
@@ -98,7 +100,7 @@ export default function RetrievalTesting() {
.setRetrievalHistory([...prevMessages, userMessage, assistantMessage])
}
},
[inputValue, isLoading, messages, setMessages]
[inputValue, isLoading, messages, setMessages, t]
)
const debouncedMessages = useDebounce(messages, 100)
@@ -117,7 +119,7 @@ export default function RetrievalTesting() {
<div className="flex min-h-0 flex-1 flex-col gap-2">
{messages.length === 0 ? (
<div className="text-muted-foreground flex h-full items-center justify-center text-lg">
Start a retrieval by typing your query below
{t('retrievePanel.retrieval.startPrompt')}
</div>
) : (
messages.map((message, idx) => (
@@ -143,18 +145,18 @@ export default function RetrievalTesting() {
size="sm"
>
<EraserIcon />
Clear
{t('retrievePanel.retrieval.clear')}
</Button>
<Input
className="flex-1"
value={inputValue}
onChange={(e) => setInputValue(e.target.value)}
placeholder="Type your query..."
placeholder={t('retrievePanel.retrieval.placeholder')}
disabled={isLoading}
/>
<Button type="submit" variant="default" disabled={isLoading} size="sm">
<SendIcon />
Send
{t('retrievePanel.retrieval.send')}
</Button>
</form>
</div>

View File

@@ -4,6 +4,7 @@ import ThemeToggle from '@/components/ThemeToggle'
import { TabsList, TabsTrigger } from '@/components/ui/Tabs'
import { useSettingsStore } from '@/stores/settings'
import { cn } from '@/lib/utils'
import { useTranslation } from 'react-i18next'
import { ZapIcon, GithubIcon } from 'lucide-react'
@@ -29,21 +30,22 @@ function NavigationTab({ value, currentTab, children }: NavigationTabProps) {
function TabsNavigation() {
const currentTab = useSettingsStore.use.currentTab()
const { t } = useTranslation()
return (
<div className="flex h-8 self-center">
<TabsList className="h-full gap-2">
<NavigationTab value="documents" currentTab={currentTab}>
Documents
{t('header.documents')}
</NavigationTab>
<NavigationTab value="knowledge-graph" currentTab={currentTab}>
Knowledge Graph
{t('header.knowledgeGraph')}
</NavigationTab>
<NavigationTab value="retrieval" currentTab={currentTab}>
Retrieval
{t('header.retrieval')}
</NavigationTab>
<NavigationTab value="api" currentTab={currentTab}>
API
{t('header.api')}
</NavigationTab>
</TabsList>
</div>
@@ -51,6 +53,7 @@ function TabsNavigation() {
}
export default function SiteHeader() {
const { t } = useTranslation()
return (
<header className="border-border/40 bg-background/95 supports-[backdrop-filter]:bg-background/60 sticky top-0 z-50 flex h-10 w-full border-b px-4 backdrop-blur">
<a href="/" className="mr-6 flex items-center gap-2">
@@ -64,7 +67,7 @@ export default function SiteHeader() {
</div>
<nav className="flex items-center">
<Button variant="ghost" size="icon" side="bottom" tooltip="Project Repository">
<Button variant="ghost" size="icon" side="bottom" tooltip={t('header.projectRepository')}>
<a href={SiteInfo.github} target="_blank" rel="noopener noreferrer">
<GithubIcon className="size-4" aria-hidden="true" />
</a>

View File

@@ -0,0 +1,21 @@
import i18n from "i18next";
import { initReactI18next } from "react-i18next";
import en from "./locales/en.json";
import zh from "./locales/zh.json";
i18n
.use(initReactI18next)
.init({
resources: {
en: { translation: en },
zh: { translation: zh }
},
lng: "en", // default
fallbackLng: "en",
interpolation: {
escapeValue: false
}
});
export default i18n;

View File

@@ -0,0 +1,234 @@
{
"header": {
"documents": "Documents",
"knowledgeGraph": "Knowledge Graph",
"retrieval": "Retrieval",
"api": "API",
"projectRepository": "Project Repository",
"themeToggle": {
"switchToLight": "Switch to light theme",
"switchToDark": "Switch to dark theme"
}
},
"documentPanel": {
"clearDocuments": {
"button": "Clear",
"tooltip": "Clear documents",
"title": "Clear Documents",
"confirm": "Do you really want to clear all documents?",
"confirmButton": "YES",
"success": "Documents cleared successfully",
"failed": "Clear Documents Failed:\n{{message}}",
"error": "Clear Documents Failed:\n{{error}}"
},
"uploadDocuments": {
"button": "Upload",
"tooltip": "Upload documents",
"title": "Upload Documents",
"description": "Drag and drop your documents here or click to browse.",
"uploading": "Uploading {{name}}: {{percent}}%",
"success": "Upload Success:\n{{name}} uploaded successfully",
"failed": "Upload Failed:\n{{name}}\n{{message}}",
"error": "Upload Failed:\n{{name}}\n{{error}}",
"generalError": "Upload Failed\n{{error}}",
"fileTypes": "Supported types: TXT, MD, DOCX, PDF, PPTX, RTF, ODT, EPUB, HTML, HTM, TEX, JSON, XML, YAML, YML, CSV, LOG, CONF, INI, PROPERTIES, SQL, BAT, SH, C, CPP, PY, JAVA, JS, TS, SWIFT, GO, RB, PHP, CSS, SCSS, LESS"
},
"documentManager": {
"title": "Document Management",
"scanButton": "Scan",
"scanTooltip": "Scan documents",
"uploadedTitle": "Uploaded Documents",
"uploadedDescription": "List of uploaded documents and their statuses.",
"emptyTitle": "No Documents",
"emptyDescription": "There are no uploaded documents yet.",
"columns": {
"id": "ID",
"summary": "Summary",
"status": "Status",
"length": "Length",
"chunks": "Chunks",
"created": "Created",
"updated": "Updated",
"metadata": "Metadata"
},
"status": {
"completed": "Completed",
"processing": "Processing",
"pending": "Pending",
"failed": "Failed"
},
"errors": {
"loadFailed": "Failed to load documents\n{{error}}",
"scanFailed": "Failed to scan documents\n{{error}}",
"scanProgressFailed": "Failed to get scan progress\n{{error}}"
}
}
},
"graphPanel": {
"sideBar": {
"settings": {
"settings": "Settings",
"healthCheck": "Health Check",
"showPropertyPanel": "Show Property Panel",
"showSearchBar": "Show Search Bar",
"showNodeLabel": "Show Node Label",
"nodeDraggable": "Node Draggable",
"showEdgeLabel": "Show Edge Label",
"hideUnselectedEdges": "Hide Unselected Edges",
"edgeEvents": "Edge Events",
"maxQueryDepth": "Max Query Depth",
"minDegree": "Minimum Degree",
"maxLayoutIterations": "Max Layout Iterations",
"apiKey": "API Key",
"enterYourAPIkey": "Enter your API key",
"save": "Save"
},
"zoomControl": {
"zoomIn": "Zoom In",
"zoomOut": "Zoom Out",
"resetZoom": "Reset Zoom"
},
"layoutsControl": {
"startAnimation": "Start the layout animation",
"stopAnimation": "Stop the layout animation",
"layoutGraph": "Layout Graph",
"layouts": {
"Circular": "Circular",
"Circlepack": "Circlepack",
"Random": "Random",
"Noverlaps": "Noverlaps",
"Force Directed": "Force Directed",
"Force Atlas": "Force Atlas"
}
},
"fullScreenControl": {
"fullScreen": "Full Screen",
"windowed": "Windowed"
}
},
"statusIndicator": {
"connected": "Connected",
"disconnected": "Disconnected"
},
"statusCard": {
"unavailable": "Status information unavailable",
"storageInfo": "Storage Info",
"workingDirectory": "Working Directory",
"inputDirectory": "Input Directory",
"llmConfig": "LLM Configuration",
"llmBinding": "LLM Binding",
"llmBindingHost": "LLM Binding Host",
"llmModel": "LLM Model",
"maxTokens": "Max Tokens",
"embeddingConfig": "Embedding Configuration",
"embeddingBinding": "Embedding Binding",
"embeddingBindingHost": "Embedding Binding Host",
"embeddingModel": "Embedding Model",
"storageConfig": "Storage Configuration",
"kvStorage": "KV Storage",
"docStatusStorage": "Doc Status Storage",
"graphStorage": "Graph Storage",
"vectorStorage": "Vector Storage"
},
"propertiesView": {
"node": {
"title": "Node",
"id": "ID",
"labels": "Labels",
"degree": "Degree",
"properties": "Properties",
"relationships": "Relationships"
},
"edge": {
"title": "Relationship",
"id": "ID",
"type": "Type",
"source": "Source",
"target": "Target",
"properties": "Properties"
}
},
"search": {
"placeholder": "Search nodes...",
"message": "And {count} others"
},
"graphLabels": {
"selectTooltip": "Select query label",
"noLabels": "No labels found",
"label": "Label",
"placeholder": "Search labels...",
"andOthers": "And {count} others"
}
},
"retrievePanel": {
"chatMessage": {
"copyTooltip": "Copy to clipboard",
"copyError": "Failed to copy text to clipboard"
},
"retrieval": {
"startPrompt": "Start a retrieval by typing your query below",
"clear": "Clear",
"send": "Send",
"placeholder": "Type your query...",
"error": "Error: Failed to get response"
},
"querySettings": {
"parametersTitle": "Parameters",
"parametersDescription": "Configure your query parameters",
"queryMode": "Query Mode",
"queryModeTooltip": "Select the retrieval strategy:\n• Naive: Basic search without advanced techniques\n• Local: Context-dependent information retrieval\n• Global: Utilizes global knowledge base\n• Hybrid: Combines local and global retrieval\n• Mix: Integrates knowledge graph with vector retrieval",
"queryModeOptions": {
"naive": "Naive",
"local": "Local",
"global": "Global",
"hybrid": "Hybrid",
"mix": "Mix"
},
"responseFormat": "Response Format",
"responseFormatTooltip": "Defines the response format. Examples:\n• Multiple Paragraphs\n• Single Paragraph\n• Bullet Points",
"responseFormatOptions": {
"multipleParagraphs": "Multiple Paragraphs",
"singleParagraph": "Single Paragraph",
"bulletPoints": "Bullet Points"
},
"topK": "Top K Results",
"topKTooltip": "Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode",
"topKPlaceholder": "Number of results",
"maxTokensTextUnit": "Max Tokens for Text Unit",
"maxTokensTextUnitTooltip": "Maximum number of tokens allowed for each retrieved text chunk",
"maxTokensGlobalContext": "Max Tokens for Global Context",
"maxTokensGlobalContextTooltip": "Maximum number of tokens allocated for relationship descriptions in global retrieval",
"maxTokensLocalContext": "Max Tokens for Local Context",
"maxTokensLocalContextTooltip": "Maximum number of tokens allocated for entity descriptions in local retrieval",
"historyTurns": "History Turns",
"historyTurnsTooltip": "Number of complete conversation turns (user-assistant pairs) to consider in the response context",
"historyTurnsPlaceholder": "Number of history turns",
"hlKeywords": "High-Level Keywords",
"hlKeywordsTooltip": "List of high-level keywords to prioritize in retrieval. Separate with commas",
"hlkeywordsPlaceHolder": "Enter keywords",
"llKeywords": "Low-Level Keywords",
"llKeywordsTooltip": "List of low-level keywords to refine retrieval focus. Separate with commas",
"onlyNeedContext": "Only Need Context",
"onlyNeedContextTooltip": "If True, only returns the retrieved context without generating a response",
"onlyNeedPrompt": "Only Need Prompt",
"onlyNeedPromptTooltip": "If True, only returns the generated prompt without producing a response",
"streamResponse": "Stream Response",
"streamResponseTooltip": "If True, enables streaming output for real-time responses"
}
}
}

View File

@@ -0,0 +1,235 @@
{
"header": {
"documents": "文档",
"knowledgeGraph": "知识图谱",
"retrieval": "检索",
"api": "API",
"projectRepository": "项目仓库",
"themeToggle": {
"switchToLight": "切换到亮色主题",
"switchToDark": "切换到暗色主题"
}
},
"documentPanel": {
"clearDocuments": {
"button": "清除",
"tooltip": "清除文档",
"title": "清除文档",
"confirm": "您确定要清除所有文档吗?",
"confirmButton": "确定",
"success": "文档已成功清除",
"failed": "清除文档失败:\n{{message}}",
"error": "清除文档失败:\n{{error}}"
},
"uploadDocuments": {
"button": "上传",
"tooltip": "上传文档",
"title": "上传文档",
"description": "拖放文档到此处或点击浏览。",
"uploading": "正在上传 {{name}}: {{percent}}%",
"success": "上传成功:\n{{name}} 上传成功",
"failed": "上传失败:\n{{name}}\n{{message}}",
"error": "上传失败:\n{{name}}\n{{error}}",
"generalError": "上传失败\n{{error}}",
"fileTypes": "支持的文件类型: TXT, MD, DOCX, PDF, PPTX, RTF, ODT, EPUB, HTML, HTM, TEX, JSON, XML, YAML, YML, CSV, LOG, CONF, INI, PROPERTIES, SQL, BAT, SH, C, CPP, PY, JAVA, JS, TS, SWIFT, GO, RB, PHP, CSS, SCSS, LESS"
},
"documentManager": {
"title": "文档管理",
"scanButton": "扫描",
"scanTooltip": "扫描文档",
"uploadedTitle": "已上传文档",
"uploadedDescription": "已上传文档及其状态列表。",
"emptyTitle": "暂无文档",
"emptyDescription": "尚未上传任何文档。",
"columns": {
"id": "ID",
"summary": "摘要",
"status": "状态",
"length": "长度",
"chunks": "分块",
"created": "创建时间",
"updated": "更新时间",
"metadata": "元数据"
},
"status": {
"completed": "已完成",
"processing": "处理中",
"pending": "待处理",
"failed": "失败"
},
"errors": {
"loadFailed": "加载文档失败\n{{error}}",
"scanFailed": "扫描文档失败\n{{error}}",
"scanProgressFailed": "获取扫描进度失败\n{{error}}"
}
}
},
"graphPanel": {
"sideBar": {
"settings": {
"settings": "设置",
"healthCheck": "健康检查",
"showPropertyPanel": "显示属性面板",
"showSearchBar": "显示搜索栏",
"showNodeLabel": "显示节点标签",
"nodeDraggable": "节点可拖动",
"showEdgeLabel": "显示边标签",
"hideUnselectedEdges": "隐藏未选中边",
"edgeEvents": "边事件",
"maxQueryDepth": "最大查询深度",
"minDegree": "最小度数",
"maxLayoutIterations": "最大布局迭代次数",
"apiKey": "API 密钥",
"enterYourAPIkey": "输入您的 API 密钥",
"save": "保存"
},
"zoomControl": {
"zoomIn": "放大",
"zoomOut": "缩小",
"resetZoom": "重置缩放"
},
"layoutsControl": {
"startAnimation": "开始布局动画",
"stopAnimation": "停止布局动画",
"layoutGraph": "布局图",
"layouts": {
"Circular": "环形布局",
"Circlepack": "圆形打包布局",
"Random": "随机布局",
"Noverlaps": "无重叠布局",
"Force Directed": "力导向布局",
"Force Atlas": "力导向图谱布局"
}
},
"fullScreenControl": {
"fullScreen": "全屏",
"windowed": "窗口模式"
}
},
"statusIndicator": {
"connected": "已连接",
"disconnected": "未连接"
},
"statusCard": {
"unavailable": "状态信息不可用",
"storageInfo": "存储信息",
"workingDirectory": "工作目录",
"inputDirectory": "输入目录",
"llmConfig": "LLM 配置",
"llmBinding": "LLM 绑定",
"llmBindingHost": "LLM 绑定主机",
"llmModel": "LLM 模型",
"maxTokens": "最大 Token 数",
"embeddingConfig": "嵌入配置",
"embeddingBinding": "嵌入绑定",
"embeddingBindingHost": "嵌入绑定主机",
"embeddingModel": "嵌入模型",
"storageConfig": "存储配置",
"kvStorage": "KV 存储",
"docStatusStorage": "文档状态存储",
"graphStorage": "图存储",
"vectorStorage": "向量存储"
},
"propertiesView": {
"node": {
"title": "节点",
"id": "ID",
"labels": "标签",
"degree": "度数",
"properties": "属性",
"relationships": "关系"
},
"edge": {
"title": "关系",
"id": "ID",
"type": "类型",
"source": "源",
"target": "目标",
"properties": "属性"
}
},
"search": {
"placeholder": "搜索节点...",
"message": "以及其它 {count} 项"
},
"graphLabels": {
"selectTooltip": "选择查询标签",
"noLabels": "未找到标签",
"label": "标签",
"placeholder": "搜索标签...",
"andOthers": "以及其它 {count} 个"
}
},
"retrievePanel": {
"chatMessage": {
"copyTooltip": "复制到剪贴板",
"copyError": "无法复制文本到剪贴板"
},
"retrieval": {
"startPrompt": "在下面输入您的查询以开始检索",
"clear": "清除",
"send": "发送",
"placeholder": "输入您的查询...",
"error": "错误:无法获取响应"
},
"querySettings": {
"parametersTitle": "参数设置",
"parametersDescription": "配置查询参数",
"queryMode": "查询模式",
"queryModeTooltip": "选择检索策略:\n• 朴素:不使用高级技术的基本搜索\n• 本地:基于上下文的信息检索\n• 全局:利用全局知识库\n• 混合:结合本地和全局检索\n• 综合:集成知识图谱与向量检索",
"queryModeOptions": {
"naive": "朴素",
"local": "本地",
"global": "全局",
"hybrid": "混合",
"mix": "综合"
},
"responseFormat": "响应格式",
"responseFormatTooltip": "定义响应格式。例如:\n• 多个段落\n• 单个段落\n• 项目符号",
"responseFormatOptions": {
"multipleParagraphs": "多个段落",
"singleParagraph": "单个段落",
"bulletPoints": "项目符号"
},
"topK": "Top K 结果数",
"topKTooltip": "要检索的前 K 个项目数量。在“本地”模式下表示实体,在“全局”模式下表示关系",
"topKPlaceholder": "结果数",
"maxTokensTextUnit": "文本单元最大 Token 数",
"maxTokensTextUnitTooltip": "每个检索到的文本块允许的最大 Token 数",
"maxTokensGlobalContext": "全局上下文最大 Token 数",
"maxTokensGlobalContextTooltip": "在全局检索中为关系描述分配的最大 Token 数",
"maxTokensLocalContext": "本地上下文最大 Token 数",
"maxTokensLocalContextTooltip": "在本地检索中为实体描述分配的最大 Token 数",
"historyTurns": "历史轮次",
"historyTurnsTooltip": "在响应上下文中考虑的完整对话轮次(用户-助手对)",
"historyTurnsPlaceholder": "历史轮次的数量",
"hlKeywords": "高级关键词",
"hlKeywordsTooltip": "检索时优先考虑的高级关键词。请用逗号分隔",
"hlkeywordsPlaceHolder": "输入关键词",
"llKeywords": "低级关键词",
"llKeywordsTooltip": "用于优化检索焦点的低级关键词。请用逗号分隔",
"onlyNeedContext": "仅需要上下文",
"onlyNeedContextTooltip": "如果为 True则仅返回检索到的上下文而不会生成回复",
"onlyNeedPrompt": "仅需要提示",
"onlyNeedPromptTooltip": "如果为 True则仅返回生成的提示而不会生成回复",
"streamResponse": "流式响应",
"streamResponseTooltip": "如果为 True则启用流式输出以获得实时响应"
}
}
}

View File

@@ -2,6 +2,8 @@ import { StrictMode } from 'react'
import { createRoot } from 'react-dom/client'
import './index.css'
import App from './App.tsx'
import "./i18n";
createRoot(document.getElementById('root')!).render(
<StrictMode>