diff --git a/README-zh.md b/README-zh.md
index 6ca44cd5..9f16dd7c 100644
--- a/README-zh.md
+++ b/README-zh.md
@@ -260,6 +260,11 @@ class QueryParam:
If provided, this will be used instead of the global model function.
This allows using different models for different query modes.
"""
+
+ user_prompt: str | None = None
+ """User-provided prompt for the query.
+ If proivded, this will be use instead of the default vaulue from prompt template.
+ """
```
> top_k的默认值可以通过环境变量TOP_K更改。
@@ -527,128 +532,23 @@ response = rag.query(
)
```
-### 自定义提示词
+### 自定义用户提示词
-LightRAG现在支持自定义提示,以便对系统行为进行精细控制。以下是使用方法:
+自定义用户提示词不影响查询内容,仅仅用于向LLM指示如何处理查询结果。以下是使用方法:
```python
# 创建查询参数
query_param = QueryParam(
- mode="hybrid", # 或其他模式:"local"、"global"、"hybrid"、"mix"和"naive"
+ mode = "hybrid", # 或其他模式:"local"、"global"、"hybrid"、"mix"和"naive"
+ user_prompt = "Please create the diagram using the Mermaid syntax"
)
-# 示例1:使用默认系统提示
+# 查询和处理
response_default = rag.query(
- "可再生能源的主要好处是什么?",
+ "Please draw a character relationship diagram for Scrooge",
param=query_param
)
print(response_default)
-
-# 示例2:使用自定义提示
-custom_prompt = """
-您是环境科学领域的专家助手。请提供详细且结构化的答案,并附带示例。
----对话历史---
-{history}
-
----知识库---
-{context_data}
-
----响应规则---
-
-- 目标格式和长度:{response_type}
-"""
-response_custom = rag.query(
- "可再生能源的主要好处是什么?",
- param=query_param,
- system_prompt=custom_prompt # 传递自定义提示
-)
-print(response_custom)
-```
-
-### 关键词提取
-
-我们引入了新函数`query_with_separate_keyword_extraction`来增强关键词提取功能。该函数将关键词提取过程与用户提示分开,专注于查询以提高提取关键词的相关性。
-
-* 工作原理
-
-该函数将输入分为两部分:
-
-- `用户查询`
-- `提示`
-
-然后仅对`用户查询`执行关键词提取。这种分离确保提取过程是集中和相关的,不受`提示`中任何额外语言的影响。它还允许`提示`纯粹用于响应格式化,保持用户原始问题的意图和清晰度。
-
-* 使用示例
-
-这个`示例`展示了如何为教育内容定制函数,专注于为高年级学生提供详细解释。
-
-```python
-rag.query_with_separate_keyword_extraction(
- query="解释重力定律",
- prompt="提供适合学习物理的高中生的详细解释。",
- param=QueryParam(mode="hybrid")
-)
-```
-
-### 插入自定义知识
-
-```python
-custom_kg = {
- "chunks": [
- {
- "content": "Alice和Bob正在合作进行量子计算研究。",
- "source_id": "doc-1"
- }
- ],
- "entities": [
- {
- "entity_name": "Alice",
- "entity_type": "person",
- "description": "Alice是一位专门研究量子物理的研究员。",
- "source_id": "doc-1"
- },
- {
- "entity_name": "Bob",
- "entity_type": "person",
- "description": "Bob是一位数学家。",
- "source_id": "doc-1"
- },
- {
- "entity_name": "量子计算",
- "entity_type": "technology",
- "description": "量子计算利用量子力学现象进行计算。",
- "source_id": "doc-1"
- }
- ],
- "relationships": [
- {
- "src_id": "Alice",
- "tgt_id": "Bob",
- "description": "Alice和Bob是研究伙伴。",
- "keywords": "合作 研究",
- "weight": 1.0,
- "source_id": "doc-1"
- },
- {
- "src_id": "Alice",
- "tgt_id": "量子计算",
- "description": "Alice进行量子计算研究。",
- "keywords": "研究 专业",
- "weight": 1.0,
- "source_id": "doc-1"
- },
- {
- "src_id": "Bob",
- "tgt_id": "量子计算",
- "description": "Bob研究量子计算。",
- "keywords": "研究 应用",
- "weight": 1.0,
- "source_id": "doc-1"
- }
- ]
-}
-
-rag.insert_custom_kg(custom_kg)
```
### 插入
@@ -934,23 +834,160 @@ updated_relation = rag.edit_relation("Google", "Google Mail", {
})
```
-
-
所有操作都有同步和异步版本。异步版本带有前缀"a"(例如,`acreate_entity`,`aedit_relation`)。
-#### 实体操作
+
+
+
+ 插入自定义知识
+
+```python
+custom_kg = {
+ "chunks": [
+ {
+ "content": "Alice和Bob正在合作进行量子计算研究。",
+ "source_id": "doc-1"
+ }
+ ],
+ "entities": [
+ {
+ "entity_name": "Alice",
+ "entity_type": "person",
+ "description": "Alice是一位专门研究量子物理的研究员。",
+ "source_id": "doc-1"
+ },
+ {
+ "entity_name": "Bob",
+ "entity_type": "person",
+ "description": "Bob是一位数学家。",
+ "source_id": "doc-1"
+ },
+ {
+ "entity_name": "量子计算",
+ "entity_type": "technology",
+ "description": "量子计算利用量子力学现象进行计算。",
+ "source_id": "doc-1"
+ }
+ ],
+ "relationships": [
+ {
+ "src_id": "Alice",
+ "tgt_id": "Bob",
+ "description": "Alice和Bob是研究伙伴。",
+ "keywords": "合作 研究",
+ "weight": 1.0,
+ "source_id": "doc-1"
+ },
+ {
+ "src_id": "Alice",
+ "tgt_id": "量子计算",
+ "description": "Alice进行量子计算研究。",
+ "keywords": "研究 专业",
+ "weight": 1.0,
+ "source_id": "doc-1"
+ },
+ {
+ "src_id": "Bob",
+ "tgt_id": "量子计算",
+ "description": "Bob研究量子计算。",
+ "keywords": "研究 应用",
+ "weight": 1.0,
+ "source_id": "doc-1"
+ }
+ ]
+}
+
+rag.insert_custom_kg(custom_kg)
+```
+
+
+
+
+ 其它实体与关系操作
- **create_entity**:创建具有指定属性的新实体
- **edit_entity**:更新现有实体的属性或重命名它
-#### 关系操作
-
- **create_relation**:在现有实体之间创建新关系
- **edit_relation**:更新现有关系的属性
这些操作在图数据库和向量数据库组件之间保持数据一致性,确保您的知识图谱保持连贯。
+
+
+## 实体合并
+
+
+ 合并实体及其关系
+
+LightRAG现在支持将多个实体合并为单个实体,自动处理所有关系:
+
+```python
+# 基本实体合并
+rag.merge_entities(
+ source_entities=["人工智能", "AI", "机器智能"],
+ target_entity="AI技术"
+)
+```
+
+使用自定义合并策略:
+
+```python
+# 为不同字段定义自定义合并策略
+rag.merge_entities(
+ source_entities=["约翰·史密斯", "史密斯博士", "J·史密斯"],
+ target_entity="约翰·史密斯",
+ merge_strategy={
+ "description": "concatenate", # 组合所有描述
+ "entity_type": "keep_first", # 保留第一个实体的类型
+ "source_id": "join_unique" # 组合所有唯一的源ID
+ }
+)
+```
+
+使用自定义目标实体数据:
+
+```python
+# 为合并后的实体指定确切值
+rag.merge_entities(
+ source_entities=["纽约", "NYC", "大苹果"],
+ target_entity="纽约市",
+ target_entity_data={
+ "entity_type": "LOCATION",
+ "description": "纽约市是美国人口最多的城市。",
+ }
+)
+```
+
+结合两种方法的高级用法:
+
+```python
+# 使用策略和自定义数据合并公司实体
+rag.merge_entities(
+ source_entities=["微软公司", "Microsoft Corporation", "MSFT"],
+ target_entity="微软",
+ merge_strategy={
+ "description": "concatenate", # 组合所有描述
+ "source_id": "join_unique" # 组合源ID
+ },
+ target_entity_data={
+ "entity_type": "ORGANIZATION",
+ }
+)
+```
+
+合并实体时:
+
+* 所有来自源实体的关系都会重定向到目标实体
+* 重复的关系会被智能合并
+* 防止自我关系(循环)
+* 合并后删除源实体
+* 保留关系权重和属性
+
+
+
## Token统计功能
+
概述和使用
@@ -1048,77 +1085,6 @@ rag.export_data("complete_data.csv", include_vector_data=True)
* 关系数据(实体之间的连接)
* 来自向量数据库的关系信息
-## 实体合并
-
-
- 合并实体及其关系
-
-LightRAG现在支持将多个实体合并为单个实体,自动处理所有关系:
-
-```python
-# 基本实体合并
-rag.merge_entities(
- source_entities=["人工智能", "AI", "机器智能"],
- target_entity="AI技术"
-)
-```
-
-使用自定义合并策略:
-
-```python
-# 为不同字段定义自定义合并策略
-rag.merge_entities(
- source_entities=["约翰·史密斯", "史密斯博士", "J·史密斯"],
- target_entity="约翰·史密斯",
- merge_strategy={
- "description": "concatenate", # 组合所有描述
- "entity_type": "keep_first", # 保留第一个实体的类型
- "source_id": "join_unique" # 组合所有唯一的源ID
- }
-)
-```
-
-使用自定义目标实体数据:
-
-```python
-# 为合并后的实体指定确切值
-rag.merge_entities(
- source_entities=["纽约", "NYC", "大苹果"],
- target_entity="纽约市",
- target_entity_data={
- "entity_type": "LOCATION",
- "description": "纽约市是美国人口最多的城市。",
- }
-)
-```
-
-结合两种方法的高级用法:
-
-```python
-# 使用策略和自定义数据合并公司实体
-rag.merge_entities(
- source_entities=["微软公司", "Microsoft Corporation", "MSFT"],
- target_entity="微软",
- merge_strategy={
- "description": "concatenate", # 组合所有描述
- "source_id": "join_unique" # 组合源ID
- },
- target_entity_data={
- "entity_type": "ORGANIZATION",
- }
-)
-```
-
-合并实体时:
-
-* 所有来自源实体的关系都会重定向到目标实体
-* 重复的关系会被智能合并
-* 防止自我关系(循环)
-* 合并后删除源实体
-* 保留关系权重和属性
-
-
-
## 缓存
diff --git a/README.md b/README.md
index 66da4375..e060a0b4 100644
--- a/README.md
+++ b/README.md
@@ -274,12 +274,6 @@ class QueryParam:
max_token_for_local_context: int = int(os.getenv("MAX_TOKEN_ENTITY_DESC", "4000"))
"""Maximum number of tokens allocated for entity descriptions in local retrieval."""
- hl_keywords: list[str] = field(default_factory=list)
- """List of high-level keywords to prioritize in retrieval."""
-
- ll_keywords: list[str] = field(default_factory=list)
- """List of low-level keywords to refine retrieval focus."""
-
conversation_history: list[dict[str, str]] = field(default_factory=list)
"""Stores past conversation history to maintain context.
Format: [{"role": "user/assistant", "content": "message"}].
@@ -296,6 +290,11 @@ class QueryParam:
If provided, this will be used instead of the global model function.
This allows using different models for different query modes.
"""
+
+ user_prompt: str | None = None
+ """User-provided prompt for the query.
+ If proivded, this will be use instead of the default vaulue from prompt template.
+ """
```
> default value of Top_k can be change by environment variables TOP_K.
@@ -571,76 +570,26 @@ response = rag.query(
-### Custom Prompt Support
+### Custom User Prompt Support
-LightRAG now supports custom prompts for fine-tuned control over the system's behavior. Here's how to use it:
-
-
- Usage Example
+Custom user prompts do not affect the query content; they are only used to instruct the LLM on how to handle the query results. Here's how to use it:
```python
# Create query parameters
query_param = QueryParam(
- mode="hybrid", # or other mode: "local", "global", "hybrid", "mix" and "naive"
+ mode = "hybrid", # 或其他模式:"local"、"global"、"hybrid"、"mix"和"naive"
+ user_prompt = "Please create the diagram using the Mermaid syntax"
)
-# Example 1: Using the default system prompt
+# Query and process
response_default = rag.query(
- "What are the primary benefits of renewable energy?",
+ "Please draw a character relationship diagram for Scrooge",
param=query_param
)
print(response_default)
-
-# Example 2: Using a custom prompt
-custom_prompt = """
-You are an expert assistant in environmental science. Provide detailed and structured answers with examples.
----Conversation History---
-{history}
-
----Knowledge Base---
-{context_data}
-
----Response Rules---
-
-- Target format and length: {response_type}
-"""
-response_custom = rag.query(
- "What are the primary benefits of renewable energy?",
- param=query_param,
- system_prompt=custom_prompt # Pass the custom prompt
-)
-print(response_custom)
```
-
-### Separate Keyword Extraction
-
-We've introduced a new function `query_with_separate_keyword_extraction` to enhance the keyword extraction capabilities. This function separates the keyword extraction process from the user's prompt, focusing solely on the query to improve the relevance of extracted keywords.
-
-**How It Works?**
-
-The function operates by dividing the input into two parts:
-
-- `User Query`
-- `Prompt`
-
-It then performs keyword extraction exclusively on the `user query`. This separation ensures that the extraction process is focused and relevant, unaffected by any additional language in the `prompt`. It also allows the `prompt` to serve purely for response formatting, maintaining the intent and clarity of the user's original question.
-
-
- Usage Example
-
-This `example` shows how to tailor the function for educational content, focusing on detailed explanations for older students.
-
-```python
-rag.query_with_separate_keyword_extraction(
- query="Explain the law of gravity",
- prompt="Provide a detailed explanation suitable for high school students studying physics.",
- param=QueryParam(mode="hybrid")
-)
-```
-
-
### Insert
@@ -725,70 +674,6 @@ rag.insert(text_content.decode('utf-8'))
-
- Insert Custom KG
-
-```python
-custom_kg = {
- "chunks": [
- {
- "content": "Alice and Bob are collaborating on quantum computing research.",
- "source_id": "doc-1"
- }
- ],
- "entities": [
- {
- "entity_name": "Alice",
- "entity_type": "person",
- "description": "Alice is a researcher specializing in quantum physics.",
- "source_id": "doc-1"
- },
- {
- "entity_name": "Bob",
- "entity_type": "person",
- "description": "Bob is a mathematician.",
- "source_id": "doc-1"
- },
- {
- "entity_name": "Quantum Computing",
- "entity_type": "technology",
- "description": "Quantum computing utilizes quantum mechanical phenomena for computation.",
- "source_id": "doc-1"
- }
- ],
- "relationships": [
- {
- "src_id": "Alice",
- "tgt_id": "Bob",
- "description": "Alice and Bob are research partners.",
- "keywords": "collaboration research",
- "weight": 1.0,
- "source_id": "doc-1"
- },
- {
- "src_id": "Alice",
- "tgt_id": "Quantum Computing",
- "description": "Alice conducts research on quantum computing.",
- "keywords": "research expertise",
- "weight": 1.0,
- "source_id": "doc-1"
- },
- {
- "src_id": "Bob",
- "tgt_id": "Quantum Computing",
- "description": "Bob researches quantum computing.",
- "keywords": "research application",
- "weight": 1.0,
- "source_id": "doc-1"
- }
- ]
-}
-
-rag.insert_custom_kg(custom_kg)
-```
-
-
-
Citation Functionality
@@ -992,12 +877,78 @@ updated_relation = rag.edit_relation("Google", "Google Mail", {
All operations are available in both synchronous and asynchronous versions. The asynchronous versions have the prefix "a" (e.g., `acreate_entity`, `aedit_relation`).
-#### Entity Operations
+
+
+
+ Insert Custom KG
+
+```python
+custom_kg = {
+ "chunks": [
+ {
+ "content": "Alice and Bob are collaborating on quantum computing research.",
+ "source_id": "doc-1"
+ }
+ ],
+ "entities": [
+ {
+ "entity_name": "Alice",
+ "entity_type": "person",
+ "description": "Alice is a researcher specializing in quantum physics.",
+ "source_id": "doc-1"
+ },
+ {
+ "entity_name": "Bob",
+ "entity_type": "person",
+ "description": "Bob is a mathematician.",
+ "source_id": "doc-1"
+ },
+ {
+ "entity_name": "Quantum Computing",
+ "entity_type": "technology",
+ "description": "Quantum computing utilizes quantum mechanical phenomena for computation.",
+ "source_id": "doc-1"
+ }
+ ],
+ "relationships": [
+ {
+ "src_id": "Alice",
+ "tgt_id": "Bob",
+ "description": "Alice and Bob are research partners.",
+ "keywords": "collaboration research",
+ "weight": 1.0,
+ "source_id": "doc-1"
+ },
+ {
+ "src_id": "Alice",
+ "tgt_id": "Quantum Computing",
+ "description": "Alice conducts research on quantum computing.",
+ "keywords": "research expertise",
+ "weight": 1.0,
+ "source_id": "doc-1"
+ },
+ {
+ "src_id": "Bob",
+ "tgt_id": "Quantum Computing",
+ "description": "Bob researches quantum computing.",
+ "keywords": "research application",
+ "weight": 1.0,
+ "source_id": "doc-1"
+ }
+ ]
+}
+
+rag.insert_custom_kg(custom_kg)
+```
+
+
+
+
+ Other Entity and Relation Operations
- **create_entity**: Creates a new entity with specified attributes
- **edit_entity**: Updates an existing entity's attributes or renames it
-#### Relation Operations
- **create_relation**: Creates a new relation between existing entities
- **edit_relation**: Updates an existing relation's attributes
@@ -1006,6 +957,77 @@ These operations maintain data consistency across both the graph database and ve
+## Entity Merging
+
+
+ Merge Entities and Their Relationships
+
+LightRAG now supports merging multiple entities into a single entity, automatically handling all relationships:
+
+```python
+# Basic entity merging
+rag.merge_entities(
+ source_entities=["Artificial Intelligence", "AI", "Machine Intelligence"],
+ target_entity="AI Technology"
+)
+```
+
+With custom merge strategy:
+
+```python
+# Define custom merge strategy for different fields
+rag.merge_entities(
+ source_entities=["John Smith", "Dr. Smith", "J. Smith"],
+ target_entity="John Smith",
+ merge_strategy={
+ "description": "concatenate", # Combine all descriptions
+ "entity_type": "keep_first", # Keep the entity type from the first entity
+ "source_id": "join_unique" # Combine all unique source IDs
+ }
+)
+```
+
+With custom target entity data:
+
+```python
+# Specify exact values for the merged entity
+rag.merge_entities(
+ source_entities=["New York", "NYC", "Big Apple"],
+ target_entity="New York City",
+ target_entity_data={
+ "entity_type": "LOCATION",
+ "description": "New York City is the most populous city in the United States.",
+ }
+)
+```
+
+Advanced usage combining both approaches:
+
+```python
+# Merge company entities with both strategy and custom data
+rag.merge_entities(
+ source_entities=["Microsoft Corp", "Microsoft Corporation", "MSFT"],
+ target_entity="Microsoft",
+ merge_strategy={
+ "description": "concatenate", # Combine all descriptions
+ "source_id": "join_unique" # Combine source IDs
+ },
+ target_entity_data={
+ "entity_type": "ORGANIZATION",
+ }
+)
+```
+
+When merging entities:
+
+* All relationships from source entities are redirected to the target entity
+* Duplicate relationships are intelligently merged
+* Self-relationships (loops) are prevented
+* Source entities are removed after merging
+* Relationship weights and attributes are preserved
+
+
+
## Token Usage Tracking
@@ -1112,78 +1134,6 @@ All exports include:
* Relation data (connections between entities)
* Relationship information from vector database
-
-## Entity Merging
-
-
- Merge Entities and Their Relationships
-
-LightRAG now supports merging multiple entities into a single entity, automatically handling all relationships:
-
-```python
-# Basic entity merging
-rag.merge_entities(
- source_entities=["Artificial Intelligence", "AI", "Machine Intelligence"],
- target_entity="AI Technology"
-)
-```
-
-With custom merge strategy:
-
-```python
-# Define custom merge strategy for different fields
-rag.merge_entities(
- source_entities=["John Smith", "Dr. Smith", "J. Smith"],
- target_entity="John Smith",
- merge_strategy={
- "description": "concatenate", # Combine all descriptions
- "entity_type": "keep_first", # Keep the entity type from the first entity
- "source_id": "join_unique" # Combine all unique source IDs
- }
-)
-```
-
-With custom target entity data:
-
-```python
-# Specify exact values for the merged entity
-rag.merge_entities(
- source_entities=["New York", "NYC", "Big Apple"],
- target_entity="New York City",
- target_entity_data={
- "entity_type": "LOCATION",
- "description": "New York City is the most populous city in the United States.",
- }
-)
-```
-
-Advanced usage combining both approaches:
-
-```python
-# Merge company entities with both strategy and custom data
-rag.merge_entities(
- source_entities=["Microsoft Corp", "Microsoft Corporation", "MSFT"],
- target_entity="Microsoft",
- merge_strategy={
- "description": "concatenate", # Combine all descriptions
- "source_id": "join_unique" # Combine source IDs
- },
- target_entity_data={
- "entity_type": "ORGANIZATION",
- }
-)
-```
-
-When merging entities:
-
-* All relationships from source entities are redirected to the target entity
-* Duplicate relationships are intelligently merged
-* Self-relationships (loops) are prevented
-* Source entities are removed after merging
-* Relationship weights and attributes are preserved
-
-
-
## Cache