improved docs
This commit is contained in:
@@ -109,38 +109,65 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
|||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
class LightRAG:
|
class LightRAG:
|
||||||
|
"""LightRAG: Simple and Fast Retrieval-Augmented Generation."""
|
||||||
|
|
||||||
working_dir: str = field(
|
working_dir: str = field(
|
||||||
default_factory=lambda: f'./lightrag_cache_{datetime.now().strftime("%Y-%m-%d-%H:%M:%S")}'
|
default_factory=lambda: f'./lightrag_cache_{datetime.now().strftime("%Y-%m-%d-%H:%M:%S")}'
|
||||||
)
|
)
|
||||||
# Default not to use embedding cache
|
"""Directory where cache and temporary files are stored."""
|
||||||
embedding_cache_config: dict = field(
|
|
||||||
|
embedding_cache_config: dict[str, Any] = field(
|
||||||
default_factory=lambda: {
|
default_factory=lambda: {
|
||||||
"enabled": False,
|
"enabled": False,
|
||||||
"similarity_threshold": 0.95,
|
"similarity_threshold": 0.95,
|
||||||
"use_llm_check": False,
|
"use_llm_check": False,
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
"""Configuration for embedding cache.
|
||||||
|
- enabled: If True, enables caching to avoid redundant computations.
|
||||||
|
- similarity_threshold: Minimum similarity score to use cached embeddings.
|
||||||
|
- use_llm_check: If True, validates cached embeddings using an LLM.
|
||||||
|
"""
|
||||||
|
|
||||||
kv_storage: str = field(default="JsonKVStorage")
|
kv_storage: str = field(default="JsonKVStorage")
|
||||||
|
"""Storage backend for key-value data."""
|
||||||
|
|
||||||
vector_storage: str = field(default="NanoVectorDBStorage")
|
vector_storage: str = field(default="NanoVectorDBStorage")
|
||||||
|
"""Storage backend for vector embeddings."""
|
||||||
|
|
||||||
graph_storage: str = field(default="NetworkXStorage")
|
graph_storage: str = field(default="NetworkXStorage")
|
||||||
|
"""Storage backend for knowledge graphs."""
|
||||||
|
|
||||||
# logging
|
# Logging
|
||||||
current_log_level = logger.level
|
current_log_level = logger.level
|
||||||
log_level: str = field(default=current_log_level)
|
log_level: int = field(default=current_log_level)
|
||||||
|
"""Logging level for the system (e.g., 'DEBUG', 'INFO', 'WARNING')."""
|
||||||
|
|
||||||
log_dir: str = field(default=os.getcwd())
|
log_dir: str = field(default=os.getcwd())
|
||||||
|
"""Directory where logs are stored. Defaults to the current working directory."""
|
||||||
|
|
||||||
# text chunking
|
# Text chunking
|
||||||
chunk_token_size: int = 1200
|
chunk_token_size: int = 1200
|
||||||
|
"""Maximum number of tokens per text chunk when splitting documents."""
|
||||||
|
|
||||||
chunk_overlap_token_size: int = 100
|
chunk_overlap_token_size: int = 100
|
||||||
|
"""Number of overlapping tokens between consecutive text chunks to preserve context."""
|
||||||
|
|
||||||
tiktoken_model_name: str = "gpt-4o-mini"
|
tiktoken_model_name: str = "gpt-4o-mini"
|
||||||
|
"""Model name used for tokenization when chunking text."""
|
||||||
|
|
||||||
# entity extraction
|
# Entity extraction
|
||||||
entity_extract_max_gleaning: int = 1
|
entity_extract_max_gleaning: int = 1
|
||||||
entity_summary_to_max_tokens: int = 500
|
"""Maximum number of entity extraction attempts for ambiguous content."""
|
||||||
|
|
||||||
# node embedding
|
entity_summary_to_max_tokens: int = 500
|
||||||
|
"""Maximum number of tokens used for summarizing extracted entities."""
|
||||||
|
|
||||||
|
# Node embedding
|
||||||
node_embedding_algorithm: str = "node2vec"
|
node_embedding_algorithm: str = "node2vec"
|
||||||
node2vec_params: dict = field(
|
"""Algorithm used for node embedding in knowledge graphs."""
|
||||||
|
|
||||||
|
node2vec_params: dict[str, int] = field(
|
||||||
default_factory=lambda: {
|
default_factory=lambda: {
|
||||||
"dimensions": 1536,
|
"dimensions": 1536,
|
||||||
"num_walks": 10,
|
"num_walks": 10,
|
||||||
@@ -150,26 +177,56 @@ class LightRAG:
|
|||||||
"random_seed": 3,
|
"random_seed": 3,
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
"""Configuration for the node2vec embedding algorithm:
|
||||||
|
- dimensions: Number of dimensions for embeddings.
|
||||||
|
- num_walks: Number of random walks per node.
|
||||||
|
- walk_length: Number of steps per random walk.
|
||||||
|
- window_size: Context window size for training.
|
||||||
|
- iterations: Number of iterations for training.
|
||||||
|
- random_seed: Seed value for reproducibility.
|
||||||
|
"""
|
||||||
|
|
||||||
|
embedding_func: EmbeddingFunc = None
|
||||||
|
"""Function for computing text embeddings. Must be set before use."""
|
||||||
|
|
||||||
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
|
||||||
embedding_func: EmbeddingFunc = None # This must be set (we do want to separate llm from the corte, so no more default initialization)
|
|
||||||
embedding_batch_num: int = 32
|
embedding_batch_num: int = 32
|
||||||
|
"""Batch size for embedding computations."""
|
||||||
|
|
||||||
embedding_func_max_async: int = 16
|
embedding_func_max_async: int = 16
|
||||||
|
"""Maximum number of concurrent embedding function calls."""
|
||||||
|
|
||||||
|
# LLM Configuration
|
||||||
|
llm_model_func: callable = None
|
||||||
|
"""Function for interacting with the large language model (LLM). Must be set before use."""
|
||||||
|
|
||||||
|
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct"
|
||||||
|
"""Name of the LLM model used for generating responses."""
|
||||||
|
|
||||||
# LLM
|
|
||||||
llm_model_func: callable = None # This must be set (we do want to separate llm from the corte, so no more default initialization)
|
|
||||||
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" # 'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
|
|
||||||
llm_model_max_token_size: int = int(os.getenv("MAX_TOKENS", "32768"))
|
llm_model_max_token_size: int = int(os.getenv("MAX_TOKENS", "32768"))
|
||||||
llm_model_max_async: int = int(os.getenv("MAX_ASYNC", "16"))
|
"""Maximum number of tokens allowed per LLM response."""
|
||||||
llm_model_kwargs: dict = field(default_factory=dict)
|
|
||||||
|
llm_model_max_async: int = int(os.getenv("MAX_ASYNC", "16"))
|
||||||
|
"""Maximum number of concurrent LLM calls."""
|
||||||
|
|
||||||
|
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
||||||
|
"""Additional keyword arguments passed to the LLM model function."""
|
||||||
|
|
||||||
|
# Storage
|
||||||
|
vector_db_storage_cls_kwargs: dict[str, Any] = field(default_factory=dict)
|
||||||
|
"""Additional parameters for vector database storage."""
|
||||||
|
|
||||||
# storage
|
|
||||||
vector_db_storage_cls_kwargs: dict = field(default_factory=dict)
|
|
||||||
namespace_prefix: str = field(default="")
|
namespace_prefix: str = field(default="")
|
||||||
|
"""Prefix for namespacing stored data across different environments."""
|
||||||
|
|
||||||
enable_llm_cache: bool = True
|
enable_llm_cache: bool = True
|
||||||
# Sometimes there are some reason the LLM failed at Extracting Entities, and we want to continue without LLM cost, we can use this flag
|
"""Enables caching for LLM responses to avoid redundant computations."""
|
||||||
|
|
||||||
enable_llm_cache_for_entity_extract: bool = True
|
enable_llm_cache_for_entity_extract: bool = True
|
||||||
|
"""If True, enables caching for entity extraction steps to reduce LLM costs."""
|
||||||
|
|
||||||
|
# Extensions
|
||||||
|
addon_params: dict[str, Any] = field(default_factory=dict)
|
||||||
|
"""Dictionary for additional parameters and extensions."""
|
||||||
|
|
||||||
# extension
|
# extension
|
||||||
addon_params: dict[str, Any] = field(default_factory=dict)
|
addon_params: dict[str, Any] = field(default_factory=dict)
|
||||||
@@ -177,8 +234,8 @@ class LightRAG:
|
|||||||
convert_response_to_json
|
convert_response_to_json
|
||||||
)
|
)
|
||||||
|
|
||||||
# Add new field for document status storage type
|
|
||||||
doc_status_storage: str = field(default="JsonDocStatusStorage")
|
doc_status_storage: str = field(default="JsonDocStatusStorage")
|
||||||
|
"""Storage type for tracking document processing statuses."""
|
||||||
|
|
||||||
# Custom Chunking Function
|
# Custom Chunking Function
|
||||||
chunking_func: Callable[
|
chunking_func: Callable[
|
||||||
|
Reference in New Issue
Block a user