cleaned import
This commit is contained in:
@@ -4,11 +4,16 @@ from tqdm.asyncio import tqdm as tqdm_async
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from datetime import datetime
|
||||
from functools import partial
|
||||
from typing import Any, Type, Union
|
||||
from typing import Any, Type, Union, cast
|
||||
import traceback
|
||||
from .operate import (
|
||||
chunking_by_token_size,
|
||||
extract_entities
|
||||
extract_entities,
|
||||
extract_keywords_only,
|
||||
kg_query,
|
||||
kg_query_with_keywords,
|
||||
mix_kg_vector_query,
|
||||
naive_query,
|
||||
# local_query,global_query,hybrid_query,,
|
||||
)
|
||||
|
||||
@@ -19,18 +24,21 @@ from .utils import (
|
||||
convert_response_to_json,
|
||||
logger,
|
||||
set_logger,
|
||||
statistic_data
|
||||
statistic_data,
|
||||
)
|
||||
from .base import (
|
||||
BaseGraphStorage,
|
||||
BaseKVStorage,
|
||||
BaseVectorStorage,
|
||||
DocStatus,
|
||||
QueryParam,
|
||||
StorageNameSpace,
|
||||
)
|
||||
|
||||
from .namespace import NameSpace, make_namespace
|
||||
|
||||
from .prompt import GRAPH_FIELD_SEP
|
||||
|
||||
STORAGES = {
|
||||
"NetworkXStorage": ".kg.networkx_impl",
|
||||
"JsonKVStorage": ".kg.json_kv_impl",
|
||||
@@ -351,9 +359,10 @@ class LightRAG:
|
||||
)
|
||||
|
||||
async def ainsert(
|
||||
self, string_or_strings: Union[str, list[str]],
|
||||
split_by_character: str | None = None,
|
||||
split_by_character_only: bool = False
|
||||
self,
|
||||
string_or_strings: Union[str, list[str]],
|
||||
split_by_character: str | None = None,
|
||||
split_by_character_only: bool = False,
|
||||
):
|
||||
"""Insert documents with checkpoint support
|
||||
|
||||
@@ -368,7 +377,6 @@ class LightRAG:
|
||||
await self.apipeline_process_chunks(split_by_character, split_by_character_only)
|
||||
await self.apipeline_process_extract_graph()
|
||||
|
||||
|
||||
def insert_custom_chunks(self, full_text: str, text_chunks: list[str]):
|
||||
loop = always_get_an_event_loop()
|
||||
return loop.run_until_complete(
|
||||
@@ -482,31 +490,27 @@ class LightRAG:
|
||||
logger.info(f"Stored {len(new_docs)} new unique documents")
|
||||
|
||||
async def apipeline_process_chunks(
|
||||
self,
|
||||
split_by_character: str | None = None,
|
||||
split_by_character_only: bool = False
|
||||
) -> None:
|
||||
self,
|
||||
split_by_character: str | None = None,
|
||||
split_by_character_only: bool = False,
|
||||
) -> None:
|
||||
"""Get pendding documents, split into chunks,insert chunks"""
|
||||
# 1. get all pending and failed documents
|
||||
to_process_doc_keys: list[str] = []
|
||||
|
||||
# Process failes
|
||||
to_process_docs = await self.full_docs.get_by_status(
|
||||
status=DocStatus.FAILED
|
||||
)
|
||||
to_process_docs = await self.full_docs.get_by_status(status=DocStatus.FAILED)
|
||||
if to_process_docs:
|
||||
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
||||
|
||||
|
||||
# Process Pending
|
||||
to_process_docs = await self.full_docs.get_by_status(
|
||||
status=DocStatus.PENDING
|
||||
)
|
||||
to_process_docs = await self.full_docs.get_by_status(status=DocStatus.PENDING)
|
||||
if to_process_docs:
|
||||
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
||||
|
||||
if not to_process_doc_keys:
|
||||
logger.info("All documents have been processed or are duplicates")
|
||||
return
|
||||
return
|
||||
|
||||
full_docs_ids = await self.full_docs.get_by_ids(to_process_doc_keys)
|
||||
new_docs = {}
|
||||
@@ -515,8 +519,8 @@ class LightRAG:
|
||||
|
||||
if not new_docs:
|
||||
logger.info("All documents have been processed or are duplicates")
|
||||
return
|
||||
|
||||
return
|
||||
|
||||
# 2. split docs into chunks, insert chunks, update doc status
|
||||
batch_size = self.addon_params.get("insert_batch_size", 10)
|
||||
for i in range(0, len(new_docs), batch_size):
|
||||
@@ -526,11 +530,11 @@ class LightRAG:
|
||||
batch_docs.items(), desc=f"Processing batch {i // batch_size + 1}"
|
||||
):
|
||||
doc_status: dict[str, Any] = {
|
||||
"content_summary": doc["content_summary"],
|
||||
"content_length": doc["content_length"],
|
||||
"status": DocStatus.PROCESSING,
|
||||
"created_at": doc["created_at"],
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
"content_summary": doc["content_summary"],
|
||||
"content_length": doc["content_length"],
|
||||
"status": DocStatus.PROCESSING,
|
||||
"created_at": doc["created_at"],
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
try:
|
||||
await self.doc_status.upsert({doc_id: doc_status})
|
||||
@@ -564,14 +568,16 @@ class LightRAG:
|
||||
|
||||
except Exception as e:
|
||||
doc_status.update(
|
||||
{
|
||||
"status": DocStatus.FAILED,
|
||||
"error": str(e),
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
)
|
||||
{
|
||||
"status": DocStatus.FAILED,
|
||||
"error": str(e),
|
||||
"updated_at": datetime.now().isoformat(),
|
||||
}
|
||||
)
|
||||
await self.doc_status.upsert({doc_id: doc_status})
|
||||
logger.error(f"Failed to process document {doc_id}: {str(e)}\n{traceback.format_exc()}")
|
||||
logger.error(
|
||||
f"Failed to process document {doc_id}: {str(e)}\n{traceback.format_exc()}"
|
||||
)
|
||||
continue
|
||||
|
||||
async def apipeline_process_extract_graph(self):
|
||||
@@ -580,22 +586,18 @@ class LightRAG:
|
||||
to_process_doc_keys: list[str] = []
|
||||
|
||||
# Process failes
|
||||
to_process_docs = await self.full_docs.get_by_status(
|
||||
status=DocStatus.FAILED
|
||||
)
|
||||
to_process_docs = await self.full_docs.get_by_status(status=DocStatus.FAILED)
|
||||
if to_process_docs:
|
||||
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
||||
|
||||
|
||||
# Process Pending
|
||||
to_process_docs = await self.full_docs.get_by_status(
|
||||
status=DocStatus.PENDING
|
||||
)
|
||||
to_process_docs = await self.full_docs.get_by_status(status=DocStatus.PENDING)
|
||||
if to_process_docs:
|
||||
to_process_doc_keys.extend([doc["id"] for doc in to_process_docs])
|
||||
|
||||
if not to_process_doc_keys:
|
||||
logger.info("All documents have been processed or are duplicates")
|
||||
return
|
||||
return
|
||||
|
||||
# Process documents in batches
|
||||
batch_size = self.addon_params.get("insert_batch_size", 10)
|
||||
@@ -606,7 +608,7 @@ class LightRAG:
|
||||
|
||||
async def process_chunk(chunk_id: str):
|
||||
async with semaphore:
|
||||
chunks:dict[str, Any] = {
|
||||
chunks: dict[str, Any] = {
|
||||
i["id"]: i for i in await self.text_chunks.get_by_ids([chunk_id])
|
||||
}
|
||||
# Extract and store entities and relationships
|
||||
@@ -1051,7 +1053,7 @@ class LightRAG:
|
||||
return content
|
||||
return content[:max_length] + "..."
|
||||
|
||||
async def get_processing_status(self) -> Dict[str, int]:
|
||||
async def get_processing_status(self) -> dict[str, int]:
|
||||
"""Get current document processing status counts
|
||||
|
||||
Returns:
|
||||
|
Reference in New Issue
Block a user