diff --git a/lightrag/kg/networkx_impl.py b/lightrag/kg/networkx_impl.py index 7a9cb203..f3483afa 100644 --- a/lightrag/kg/networkx_impl.py +++ b/lightrag/kg/networkx_impl.py @@ -259,118 +259,59 @@ class NetworkXStorage(BaseGraphStorage): self, node_label: str, max_depth: int = 3, - min_degree: int = 0, - inclusive: bool = False, + max_nodes: int = MAX_GRAPH_NODES, ) -> KnowledgeGraph: """ Retrieve a connected subgraph of nodes where the label includes the specified `node_label`. - Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000). - When reducing the number of nodes, the prioritization criteria are as follows: - 1. min_degree does not affect nodes directly connected to the matching nodes - 2. Label matching nodes take precedence - 3. Followed by nodes directly connected to the matching nodes - 4. Finally, the degree of the nodes Args: - node_label: Label of the starting node - max_depth: Maximum depth of the subgraph - min_degree: Minimum degree of nodes to include. Defaults to 0 - inclusive: Do an inclusive search if true + node_label: Label of the starting node,* means all nodes + max_depth: Maximum depth of the subgraph, Defaults to 3 + max_nodes: Maxiumu nodes to return by BFS, Defaults to 1000 Returns: KnowledgeGraph object containing nodes and edges """ - result = KnowledgeGraph() - seen_nodes = set() - seen_edges = set() - graph = await self._get_graph() - # Initialize sets for start nodes and direct connected nodes - start_nodes = set() - direct_connected_nodes = set() - # Handle special case for "*" label if node_label == "*": - # For "*", return the entire graph including all nodes and edges - subgraph = ( - graph.copy() - ) # Create a copy to avoid modifying the original graph + # Get degrees of all nodes + degrees = dict(graph.degree()) + # Sort nodes by degree in descending order and take top max_nodes + sorted_nodes = sorted(degrees.items(), key=lambda x: x[1], reverse=True) + limited_nodes = [node for node, _ in sorted_nodes[:max_nodes]] + # Create subgraph with the highest degree nodes + subgraph = graph.subgraph(limited_nodes) else: - # Find nodes with matching node id based on search_mode - nodes_to_explore = [] - for n, attr in graph.nodes(data=True): - node_str = str(n) - if not inclusive: - if node_label == node_str: # Use exact matching - nodes_to_explore.append(n) - else: # inclusive mode - if node_label in node_str: # Use partial matching - nodes_to_explore.append(n) + # Check if node exists + if node_label not in graph: + logger.warning(f"Node {node_label} not found in the graph") + return KnowledgeGraph() # Return empty graph - if not nodes_to_explore: - logger.warning(f"No nodes found with label {node_label}") - return result + # Use BFS to get nodes + bfs_nodes = [] + visited = set() + queue = [node_label] - # Get subgraph using ego_graph from all matching nodes - combined_subgraph = nx.Graph() - for start_node in nodes_to_explore: - node_subgraph = nx.ego_graph(graph, start_node, radius=max_depth) - combined_subgraph = nx.compose(combined_subgraph, node_subgraph) + # Breadth-first search + while queue and len(bfs_nodes) < max_nodes: + current = queue.pop(0) + if current not in visited: + visited.add(current) + bfs_nodes.append(current) - # Get start nodes and direct connected nodes - if nodes_to_explore: - start_nodes = set(nodes_to_explore) - # Get nodes directly connected to all start nodes - for start_node in start_nodes: - direct_connected_nodes.update( - combined_subgraph.neighbors(start_node) - ) + # Add neighbor nodes to queue + neighbors = list(graph.neighbors(current)) + queue.extend([n for n in neighbors if n not in visited]) - # Remove start nodes from directly connected nodes (avoid duplicates) - direct_connected_nodes -= start_nodes - - subgraph = combined_subgraph - - # Filter nodes based on min_degree, but keep start nodes and direct connected nodes - if min_degree > 0: - nodes_to_keep = [ - node - for node, degree in subgraph.degree() - if node in start_nodes - or node in direct_connected_nodes - or degree >= min_degree - ] - subgraph = subgraph.subgraph(nodes_to_keep) - - # Check if number of nodes exceeds max_graph_nodes - if len(subgraph.nodes()) > MAX_GRAPH_NODES: - origin_nodes = len(subgraph.nodes()) - node_degrees = dict(subgraph.degree()) - - def priority_key(node_item): - node, degree = node_item - # Priority order: start(2) > directly connected(1) > other nodes(0) - if node in start_nodes: - priority = 2 - elif node in direct_connected_nodes: - priority = 1 - else: - priority = 0 - return (priority, degree) - - # Sort by priority and degree and select top MAX_GRAPH_NODES nodes - top_nodes = sorted(node_degrees.items(), key=priority_key, reverse=True)[ - :MAX_GRAPH_NODES - ] - top_node_ids = [node[0] for node in top_nodes] - # Create new subgraph and keep nodes only with most degree - subgraph = subgraph.subgraph(top_node_ids) - logger.info( - f"Reduced graph from {origin_nodes} nodes to {MAX_GRAPH_NODES} nodes (depth={max_depth})" - ) + # Create subgraph with BFS discovered nodes + subgraph = graph.subgraph(bfs_nodes) # Add nodes to result + result = KnowledgeGraph() + seen_nodes = set() + seen_edges = set() for node in subgraph.nodes(): if str(node) in seen_nodes: continue @@ -398,7 +339,7 @@ class NetworkXStorage(BaseGraphStorage): for edge in subgraph.edges(): source, target = edge # Esure unique edge_id for undirect graph - if source > target: + if str(source) > str(target): source, target = target, source edge_id = f"{source}-{target}" if edge_id in seen_edges: