Refactor vector query methods to support optional ID filtering
- Updated BaseVectorStorage query method signature to accept optional IDs - Modified operate.py to pass query parameter IDs to vector storage queries - Updated PostgreSQL vector storage SQL templates to filter results by document IDs - Removed unused parameters and simplified query logic across multiple files
This commit is contained in:
@@ -108,9 +108,8 @@ class BaseVectorStorage(StorageNameSpace, ABC):
|
|||||||
embedding_func: EmbeddingFunc
|
embedding_func: EmbeddingFunc
|
||||||
cosine_better_than_threshold: float = field(default=0.2)
|
cosine_better_than_threshold: float = field(default=0.2)
|
||||||
meta_fields: set[str] = field(default_factory=set)
|
meta_fields: set[str] = field(default_factory=set)
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
async def query(self, query: str, top_k: int, ids: list[str] = None) -> list[dict[str, Any]]:
|
async def query(self, query: str, top_k: int, ids: list[str] | None = None) -> list[dict[str, Any]]:
|
||||||
"""Query the vector storage and retrieve top_k results."""
|
"""Query the vector storage and retrieve top_k results."""
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
|
@@ -439,6 +439,7 @@ class PGVectorStorage(BaseVectorStorage):
|
|||||||
"content": item["content"],
|
"content": item["content"],
|
||||||
"content_vector": json.dumps(item["__vector__"].tolist()),
|
"content_vector": json.dumps(item["__vector__"].tolist()),
|
||||||
"chunk_id": item["source_id"],
|
"chunk_id": item["source_id"],
|
||||||
|
#TODO: add document_id
|
||||||
}
|
}
|
||||||
return upsert_sql, data
|
return upsert_sql, data
|
||||||
|
|
||||||
@@ -452,6 +453,7 @@ class PGVectorStorage(BaseVectorStorage):
|
|||||||
"content": item["content"],
|
"content": item["content"],
|
||||||
"content_vector": json.dumps(item["__vector__"].tolist()),
|
"content_vector": json.dumps(item["__vector__"].tolist()),
|
||||||
"chunk_id": item["source_id"]
|
"chunk_id": item["source_id"]
|
||||||
|
#TODO: add document_id
|
||||||
}
|
}
|
||||||
return upsert_sql, data
|
return upsert_sql, data
|
||||||
|
|
||||||
@@ -494,13 +496,19 @@ class PGVectorStorage(BaseVectorStorage):
|
|||||||
await self.db.execute(upsert_sql, data)
|
await self.db.execute(upsert_sql, data)
|
||||||
|
|
||||||
#################### query method ###############
|
#################### query method ###############
|
||||||
async def query(self, query: str, top_k: int, ids: list[str] = None) -> list[dict[str, Any]]:
|
async def query(self, query: str, top_k: int, ids: list[str] | None = None) -> list[dict[str, Any]]:
|
||||||
embeddings = await self.embedding_func([query])
|
embeddings = await self.embedding_func([query])
|
||||||
embedding = embeddings[0]
|
embedding = embeddings[0]
|
||||||
embedding_string = ",".join(map(str, embedding))
|
embedding_string = ",".join(map(str, embedding))
|
||||||
|
|
||||||
|
if ids:
|
||||||
|
formatted_ids = ",".join(f"'{id}'" for id in ids)
|
||||||
|
else:
|
||||||
|
formatted_ids = "NULL"
|
||||||
|
|
||||||
sql = SQL_TEMPLATES[self.base_namespace].format(
|
sql = SQL_TEMPLATES[self.base_namespace].format(
|
||||||
embedding_string=embedding_string
|
embedding_string=embedding_string,
|
||||||
|
doc_ids=formatted_ids
|
||||||
)
|
)
|
||||||
params = {
|
params = {
|
||||||
"workspace": self.db.workspace,
|
"workspace": self.db.workspace,
|
||||||
@@ -1389,7 +1397,6 @@ TABLES = {
|
|||||||
content_vector VECTOR,
|
content_vector VECTOR,
|
||||||
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||||
update_time TIMESTAMP,
|
update_time TIMESTAMP,
|
||||||
document_id VARCHAR(255) NULL,
|
|
||||||
chunk_id VARCHAR(255) NULL,
|
chunk_id VARCHAR(255) NULL,
|
||||||
CONSTRAINT LIGHTRAG_VDB_ENTITY_PK PRIMARY KEY (workspace, id)
|
CONSTRAINT LIGHTRAG_VDB_ENTITY_PK PRIMARY KEY (workspace, id)
|
||||||
)"""
|
)"""
|
||||||
@@ -1404,7 +1411,6 @@ TABLES = {
|
|||||||
content_vector VECTOR,
|
content_vector VECTOR,
|
||||||
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||||
update_time TIMESTAMP,
|
update_time TIMESTAMP,
|
||||||
document_id VARCHAR(255) NULL,
|
|
||||||
chunk_id VARCHAR(255) NULL,
|
chunk_id VARCHAR(255) NULL,
|
||||||
CONSTRAINT LIGHTRAG_VDB_RELATION_PK PRIMARY KEY (workspace, id)
|
CONSTRAINT LIGHTRAG_VDB_RELATION_PK PRIMARY KEY (workspace, id)
|
||||||
)"""
|
)"""
|
||||||
@@ -1507,21 +1513,21 @@ SQL_TEMPLATES = {
|
|||||||
content_vector=EXCLUDED.content_vector, update_time = CURRENT_TIMESTAMP
|
content_vector=EXCLUDED.content_vector, update_time = CURRENT_TIMESTAMP
|
||||||
""",
|
""",
|
||||||
# SQL for VectorStorage
|
# SQL for VectorStorage
|
||||||
"entities": """SELECT entity_name FROM
|
# "entities": """SELECT entity_name FROM
|
||||||
(SELECT id, entity_name, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
# (SELECT id, entity_name, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||||
FROM LIGHTRAG_VDB_ENTITY where workspace=$1)
|
# FROM LIGHTRAG_VDB_ENTITY where workspace=$1)
|
||||||
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
# WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
||||||
""",
|
# """,
|
||||||
"relationships": """SELECT source_id as src_id, target_id as tgt_id FROM
|
# "relationships": """SELECT source_id as src_id, target_id as tgt_id FROM
|
||||||
(SELECT id, source_id,target_id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
# (SELECT id, source_id,target_id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||||
FROM LIGHTRAG_VDB_RELATION where workspace=$1)
|
# FROM LIGHTRAG_VDB_RELATION where workspace=$1)
|
||||||
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
# WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
||||||
""",
|
# """,
|
||||||
"chunks": """SELECT id FROM
|
# "chunks": """SELECT id FROM
|
||||||
(SELECT id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
# (SELECT id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||||
FROM LIGHTRAG_DOC_CHUNKS where workspace=$1)
|
# FROM LIGHTRAG_DOC_CHUNKS where workspace=$1)
|
||||||
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
# WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
||||||
""",
|
# """,
|
||||||
# DROP tables
|
# DROP tables
|
||||||
"drop_all": """
|
"drop_all": """
|
||||||
DROP TABLE IF EXISTS LIGHTRAG_DOC_FULL CASCADE;
|
DROP TABLE IF EXISTS LIGHTRAG_DOC_FULL CASCADE;
|
||||||
@@ -1545,4 +1551,56 @@ SQL_TEMPLATES = {
|
|||||||
"drop_vdb_relation": """
|
"drop_vdb_relation": """
|
||||||
DROP TABLE IF EXISTS LIGHTRAG_VDB_RELATION CASCADE;
|
DROP TABLE IF EXISTS LIGHTRAG_VDB_RELATION CASCADE;
|
||||||
""",
|
""",
|
||||||
}
|
"relationships": """
|
||||||
|
WITH relevant_chunks AS (
|
||||||
|
SELECT id as chunk_id
|
||||||
|
FROM LIGHTRAG_DOC_CHUNKS
|
||||||
|
WHERE {doc_ids} IS NULL OR full_doc_id = ANY(ARRAY[{doc_ids}])
|
||||||
|
)
|
||||||
|
SELECT source_id as src_id, target_id as tgt_id
|
||||||
|
FROM (
|
||||||
|
SELECT r.id, r.source_id, r.target_id, 1 - (r.content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||||
|
FROM LIGHTRAG_VDB_RELATION r
|
||||||
|
WHERE r.workspace=$1
|
||||||
|
AND r.chunk_id IN (SELECT chunk_id FROM relevant_chunks)
|
||||||
|
) filtered
|
||||||
|
WHERE distance>$2
|
||||||
|
ORDER BY distance DESC
|
||||||
|
LIMIT $3
|
||||||
|
""",
|
||||||
|
"entities":
|
||||||
|
'''
|
||||||
|
WITH relevant_chunks AS (
|
||||||
|
SELECT id as chunk_id
|
||||||
|
FROM LIGHTRAG_DOC_CHUNKS
|
||||||
|
WHERE {doc_ids} IS NULL OR full_doc_id = ANY(ARRAY[{doc_ids}])
|
||||||
|
)
|
||||||
|
SELECT entity_name FROM
|
||||||
|
(
|
||||||
|
SELECT id, entity_name, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||||
|
FROM LIGHTRAG_VDB_ENTITY
|
||||||
|
where workspace=$1
|
||||||
|
AND chunk_id IN (SELECT chunk_id FROM relevant_chunks)
|
||||||
|
)
|
||||||
|
WHERE distance>$2
|
||||||
|
ORDER BY distance DESC
|
||||||
|
LIMIT $3
|
||||||
|
''',
|
||||||
|
'chunks': """
|
||||||
|
WITH relevant_chunks AS (
|
||||||
|
SELECT id as chunk_id
|
||||||
|
FROM LIGHTRAG_DOC_CHUNKS
|
||||||
|
WHERE {doc_ids} IS NULL OR full_doc_id = ANY(ARRAY[{doc_ids}])
|
||||||
|
)
|
||||||
|
SELECT id FROM
|
||||||
|
(
|
||||||
|
SELECT id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
||||||
|
FROM LIGHTRAG_DOC_CHUNKS
|
||||||
|
where workspace=$1
|
||||||
|
AND chunk_id IN (SELECT chunk_id FROM relevant_chunks)
|
||||||
|
)
|
||||||
|
WHERE distance>$2
|
||||||
|
ORDER BY distance DESC
|
||||||
|
LIMIT $3
|
||||||
|
"""
|
||||||
|
}
|
@@ -1243,7 +1243,6 @@ class LightRAG:
|
|||||||
embedding_func=self.embedding_func,
|
embedding_func=self.embedding_func,
|
||||||
),
|
),
|
||||||
system_prompt=system_prompt,
|
system_prompt=system_prompt,
|
||||||
ids = param.ids
|
|
||||||
)
|
)
|
||||||
elif param.mode == "naive":
|
elif param.mode == "naive":
|
||||||
response = await naive_query(
|
response = await naive_query(
|
||||||
|
@@ -602,7 +602,6 @@ async def kg_query(
|
|||||||
global_config: dict[str, str],
|
global_config: dict[str, str],
|
||||||
hashing_kv: BaseKVStorage | None = None,
|
hashing_kv: BaseKVStorage | None = None,
|
||||||
system_prompt: str | None = None,
|
system_prompt: str | None = None,
|
||||||
ids: list[str] | None = None,
|
|
||||||
) -> str | AsyncIterator[str]:
|
) -> str | AsyncIterator[str]:
|
||||||
# Handle cache
|
# Handle cache
|
||||||
use_model_func = global_config["llm_model_func"]
|
use_model_func = global_config["llm_model_func"]
|
||||||
@@ -650,7 +649,6 @@ async def kg_query(
|
|||||||
relationships_vdb,
|
relationships_vdb,
|
||||||
text_chunks_db,
|
text_chunks_db,
|
||||||
query_param,
|
query_param,
|
||||||
ids
|
|
||||||
)
|
)
|
||||||
|
|
||||||
if query_param.only_need_context:
|
if query_param.only_need_context:
|
||||||
@@ -1035,7 +1033,6 @@ async def _build_query_context(
|
|||||||
relationships_vdb,
|
relationships_vdb,
|
||||||
text_chunks_db,
|
text_chunks_db,
|
||||||
query_param,
|
query_param,
|
||||||
ids = ids
|
|
||||||
)
|
)
|
||||||
else: # hybrid mode
|
else: # hybrid mode
|
||||||
ll_data, hl_data = await asyncio.gather(
|
ll_data, hl_data = await asyncio.gather(
|
||||||
@@ -1104,7 +1101,9 @@ async def _get_node_data(
|
|||||||
logger.info(
|
logger.info(
|
||||||
f"Query nodes: {query}, top_k: {query_param.top_k}, cosine: {entities_vdb.cosine_better_than_threshold}"
|
f"Query nodes: {query}, top_k: {query_param.top_k}, cosine: {entities_vdb.cosine_better_than_threshold}"
|
||||||
)
|
)
|
||||||
results = await entities_vdb.query(query, top_k=query_param.top_k)
|
|
||||||
|
results = await entities_vdb.query(query, top_k=query_param.top_k, ids = query_param.ids)
|
||||||
|
|
||||||
if not len(results):
|
if not len(results):
|
||||||
return "", "", ""
|
return "", "", ""
|
||||||
# get entity information
|
# get entity information
|
||||||
@@ -1352,16 +1351,12 @@ async def _get_edge_data(
|
|||||||
relationships_vdb: BaseVectorStorage,
|
relationships_vdb: BaseVectorStorage,
|
||||||
text_chunks_db: BaseKVStorage,
|
text_chunks_db: BaseKVStorage,
|
||||||
query_param: QueryParam,
|
query_param: QueryParam,
|
||||||
ids: list[str] | None = None,
|
|
||||||
):
|
):
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Query edges: {keywords}, top_k: {query_param.top_k}, cosine: {relationships_vdb.cosine_better_than_threshold}"
|
f"Query edges: {keywords}, top_k: {query_param.top_k}, cosine: {relationships_vdb.cosine_better_than_threshold}"
|
||||||
)
|
)
|
||||||
if ids:
|
|
||||||
#TODO: add ids to the query
|
results = await relationships_vdb.query(keywords, top_k = query_param.top_k, ids = query_param.ids)
|
||||||
results = await relationships_vdb.query(keywords, top_k = query_param.top_k, ids = ids)
|
|
||||||
else:
|
|
||||||
results = await relationships_vdb.query(keywords, top_k=query_param.top_k)
|
|
||||||
|
|
||||||
if not len(results):
|
if not len(results):
|
||||||
return "", "", ""
|
return "", "", ""
|
||||||
@@ -1610,7 +1605,7 @@ async def naive_query(
|
|||||||
if cached_response is not None:
|
if cached_response is not None:
|
||||||
return cached_response
|
return cached_response
|
||||||
|
|
||||||
results = await chunks_vdb.query(query, top_k=query_param.top_k)
|
results = await chunks_vdb.query(query, top_k=query_param.top_k, ids = query_param.ids)
|
||||||
if not len(results):
|
if not len(results):
|
||||||
return PROMPTS["fail_response"]
|
return PROMPTS["fail_response"]
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user