add LightRAG init parameters in readme

also fix some error
This commit is contained in:
jin
2024-11-26 10:19:28 +08:00
parent 0ffd44b79c
commit 5bde05ed53
5 changed files with 53 additions and 23 deletions

View File

@@ -511,6 +511,35 @@ if __name__ == "__main__":
</details> </details>
### LightRAG init parameters
| **Parameter** | **Type** | **Explanation** | **Default** |
| --- | --- | --- | --- |
| **working\_dir** | `str` | Directory where the cache will be stored | `lightrag_cache+timestamp` |
| **kv\_storage** | `str` | Storage type for documents and text chunks. Supported types: `JsonKVStorage`, `OracleKVStorage` | `JsonKVStorage` |
| **vector\_storage** | `str` | Storage type for embedding vectors. Supported types: `NanoVectorDBStorage`, `OracleVectorDBStorage` | `NanoVectorDBStorage` |
| **graph\_storage** | `str` | Storage type for graph edges and nodes. Supported types: `NetworkXStorage`, `Neo4JStorage`, `OracleGraphStorage` | `NetworkXStorage` |
| **log\_level** | | Log level for application runtime | `logging.DEBUG` |
| **chunk\_token\_size** | `int` | Maximum token size per chunk when splitting documents | `1200` |
| **chunk\_overlap\_token\_size** | `int` | Overlap token size between two chunks when splitting documents | `100` |
| **tiktoken\_model\_name** | `str` | Model name for the Tiktoken encoder used to calculate token numbers | `gpt-4o-mini` |
| **entity\_extract\_max\_gleaning** | `int` | Number of loops in the entity extraction process, appending history messages | `1` |
| **entity\_summary\_to\_max\_tokens** | `int` | Maximum token size for each entity summary | `500` |
| **node\_embedding\_algorithm** | `str` | Algorithm for node embedding (currently not used) | `node2vec` |
| **node2vec\_params** | `dict` | Parameters for node embedding | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` |
| **embedding\_func** | `EmbeddingFunc` | Function to generate embedding vectors from text | `openai_embedding` |
| **embedding\_batch\_num** | `int` | Maximum batch size for embedding processes (multiple texts sent per batch) | `32` |
| **embedding\_func\_max\_async** | `int` | Maximum number of concurrent asynchronous embedding processes | `16` |
| **llm\_model\_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
| **llm\_model\_name** | `str` | LLM model name for generation | `meta-llama/Llama-3.2-1B-Instruct` |
| **llm\_model\_max\_token\_size** | `int` | Maximum token size for LLM generation (affects entity relation summaries) | `32768` |
| **llm\_model\_max\_async** | `int` | Maximum number of concurrent asynchronous LLM processes | `16` |
| **llm\_model\_kwargs** | `dict` | Additional parameters for LLM generation | |
| **vector\_db\_storage\_cls\_kwargs** | `dict` | Additional parameters for vector database (currently not used) | |
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese"}`: sets example limit and output language | `example_number: all examples, language: English` |
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
## API Server Implementation ## API Server Implementation
LightRAG also provides a FastAPI-based server implementation for RESTful API access to RAG operations. This allows you to run LightRAG as a service and interact with it through HTTP requests. LightRAG also provides a FastAPI-based server implementation for RESTful API access to RAG operations. This allows you to run LightRAG as a service and interact with it through HTTP requests.

View File

@@ -81,7 +81,7 @@ async def get_embedding_dim():
async def init(): async def init():
# Detect embedding dimension # Detect embedding dimension
embedding_dimension = 1024 # await get_embedding_dim() embedding_dimension = await get_embedding_dim()
print(f"Detected embedding dimension: {embedding_dimension}") print(f"Detected embedding dimension: {embedding_dimension}")
# Create Oracle DB connection # Create Oracle DB connection
# The `config` parameter is the connection configuration of Oracle DB # The `config` parameter is the connection configuration of Oracle DB
@@ -105,6 +105,7 @@ async def init():
await oracle_db.check_tables() await oracle_db.check_tables()
# Initialize LightRAG # Initialize LightRAG
# We use Oracle DB as the KV/vector/graph storage # We use Oracle DB as the KV/vector/graph storage
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
rag = LightRAG( rag = LightRAG(
enable_llm_cache=False, enable_llm_cache=False,
working_dir=WORKING_DIR, working_dir=WORKING_DIR,

View File

@@ -84,6 +84,7 @@ async def main():
# Initialize LightRAG # Initialize LightRAG
# We use Oracle DB as the KV/vector/graph storage # We use Oracle DB as the KV/vector/graph storage
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
rag = LightRAG( rag = LightRAG(
enable_llm_cache=False, enable_llm_cache=False,
working_dir=WORKING_DIR, working_dir=WORKING_DIR,
@@ -96,8 +97,7 @@ async def main():
), ),
graph_storage="OracleGraphStorage", graph_storage="OracleGraphStorage",
kv_storage="OracleKVStorage", kv_storage="OracleKVStorage",
vector_storage="OracleVectorDBStorage", vector_storage="OracleVectorDBStorage"
addon_params={"example_number": 1, "language": "Simplfied Chinese"},
) )
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool # Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool

View File

@@ -72,7 +72,7 @@ async def openai_complete_if_cache(
content = response.choices[0].message.content content = response.choices[0].message.content
if r"\u" in content: if r"\u" in content:
content = content.encode("utf-8").decode("unicode_escape") content = content.encode("utf-8").decode("unicode_escape")
print(content) # print(content)
if hashing_kv is not None: if hashing_kv is not None:
await hashing_kv.upsert( await hashing_kv.upsert(
{args_hash: {"return": response.choices[0].message.content, "model": model}} {args_hash: {"return": response.choices[0].message.content, "model": model}}

View File

@@ -571,19 +571,19 @@ async def _build_query_context(
hl_text_units_context, hl_text_units_context,
) )
return f""" return f"""
# -----Entities----- -----Entities-----
# ```csv ```csv
# {entities_context} {entities_context}
# ``` ```
# -----Relationships----- -----Relationships-----
# ```csv ```csv
# {relations_context} {relations_context}
# ``` ```
# -----Sources----- -----Sources-----
# ```csv ```csv
# {text_units_context} {text_units_context}
# ``` ```
# """ """
async def _get_node_data( async def _get_node_data(
@@ -593,18 +593,18 @@ async def _get_node_data(
text_chunks_db: BaseKVStorage[TextChunkSchema], text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam, query_param: QueryParam,
): ):
# 获取相似的实体 # get similar entities
results = await entities_vdb.query(query, top_k=query_param.top_k) results = await entities_vdb.query(query, top_k=query_param.top_k)
if not len(results): if not len(results):
return None return None
# 获取实体信息 # get entity information
node_datas = await asyncio.gather( node_datas = await asyncio.gather(
*[knowledge_graph_inst.get_node(r["entity_name"]) for r in results] *[knowledge_graph_inst.get_node(r["entity_name"]) for r in results]
) )
if not all([n is not None for n in node_datas]): if not all([n is not None for n in node_datas]):
logger.warning("Some nodes are missing, maybe the storage is damaged") logger.warning("Some nodes are missing, maybe the storage is damaged")
# 获取实体的度 # get entity degree
node_degrees = await asyncio.gather( node_degrees = await asyncio.gather(
*[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results] *[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results]
) )
@@ -613,11 +613,11 @@ async def _get_node_data(
for k, n, d in zip(results, node_datas, node_degrees) for k, n, d in zip(results, node_datas, node_degrees)
if n is not None if n is not None
] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram. ] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
# 根据实体获取文本片段 # get entitytext chunk
use_text_units = await _find_most_related_text_unit_from_entities( use_text_units = await _find_most_related_text_unit_from_entities(
node_datas, query_param, text_chunks_db, knowledge_graph_inst node_datas, query_param, text_chunks_db, knowledge_graph_inst
) )
# 获取关联的边 # get relate edges
use_relations = await _find_most_related_edges_from_entities( use_relations = await _find_most_related_edges_from_entities(
node_datas, query_param, knowledge_graph_inst node_datas, query_param, knowledge_graph_inst
) )
@@ -625,7 +625,7 @@ async def _get_node_data(
f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} text units" f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} text units"
) )
# 构建提示词 # build prompt
entites_section_list = [["id", "entity", "type", "description", "rank"]] entites_section_list = [["id", "entity", "type", "description", "rank"]]
for i, n in enumerate(node_datas): for i, n in enumerate(node_datas):
entites_section_list.append( entites_section_list.append(