Merge from main

This commit is contained in:
yangdx
2025-01-29 22:13:01 +08:00
4 changed files with 510 additions and 60 deletions

View File

@@ -0,0 +1,73 @@
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
from lightrag.utils import EmbeddingFunc
import numpy as np
#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
# import nest_asyncio
# nest_asyncio.apply()
#########
WORKING_DIR = "./mongodb_test_dir"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
os.environ["OPENAI_API_KEY"] = "sk-"
os.environ["MONGO_URI"] = "mongodb://0.0.0.0:27017/?directConnection=true"
os.environ["MONGO_DATABASE"] = "LightRAG"
os.environ["MONGO_KG_COLLECTION"] = "MDB_KG"
# Embedding Configuration and Functions
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
texts,
model=EMBEDDING_MODEL,
)
async def get_embedding_dimension():
test_text = ["This is a test sentence."]
embedding = await embedding_func(test_text)
return embedding.shape[1]
async def create_embedding_function_instance():
# Get embedding dimension
embedding_dimension = await get_embedding_dimension()
# Create embedding function instance
return EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
func=embedding_func,
)
async def initialize_rag():
embedding_func_instance = await create_embedding_function_instance()
return LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete,
embedding_func=embedding_func_instance,
graph_storage="MongoGraphStorage",
log_level="DEBUG",
)
# Run the initialization
rag = asyncio.run(initialize_rag())
with open("book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Perform naive search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
)

View File

@@ -48,18 +48,23 @@ def estimate_tokens(text: str) -> int:
return int(tokens) return int(tokens)
# Constants for emulated Ollama model information class OllamaServerInfos:
LIGHTRAG_NAME = "lightrag" # Constants for emulated Ollama model information
LIGHTRAG_TAG = os.getenv("OLLAMA_EMULATING_MODEL_TAG", "latest") LIGHTRAG_NAME = "lightrag"
LIGHTRAG_MODEL = f"{LIGHTRAG_NAME}:{LIGHTRAG_TAG}" LIGHTRAG_TAG = os.getenv("OLLAMA_EMULATING_MODEL_TAG", "latest")
LIGHTRAG_SIZE = 7365960935 # it's a dummy value LIGHTRAG_MODEL = f"{LIGHTRAG_NAME}:{LIGHTRAG_TAG}"
LIGHTRAG_CREATED_AT = "2024-01-15T00:00:00Z" LIGHTRAG_SIZE = 7365960935 # it's a dummy value
LIGHTRAG_DIGEST = "sha256:lightrag" LIGHTRAG_CREATED_AT = "2024-01-15T00:00:00Z"
LIGHTRAG_DIGEST = "sha256:lightrag"
KV_STORAGE = "JsonKVStorage" KV_STORAGE = "JsonKVStorage"
DOC_STATUS_STORAGE = "JsonDocStatusStorage" DOC_STATUS_STORAGE = "JsonDocStatusStorage"
GRAPH_STORAGE = "NetworkXStorage" GRAPH_STORAGE = "NetworkXStorage"
VECTOR_STORAGE = "NanoVectorDBStorage" VECTOR_STORAGE = "NanoVectorDBStorage"
# Add infos
ollama_server_infos = OllamaServerInfos()
# read config.ini # read config.ini
config = configparser.ConfigParser() config = configparser.ConfigParser()
@@ -68,8 +73,8 @@ config.read("config.ini", "utf-8")
redis_uri = config.get("redis", "uri", fallback=None) redis_uri = config.get("redis", "uri", fallback=None)
if redis_uri: if redis_uri:
os.environ["REDIS_URI"] = redis_uri os.environ["REDIS_URI"] = redis_uri
KV_STORAGE = "RedisKVStorage" ollama_server_infos.KV_STORAGE = "RedisKVStorage"
DOC_STATUS_STORAGE = "RedisKVStorage" ollama_server_infos.DOC_STATUS_STORAGE = "RedisKVStorage"
# Neo4j config # Neo4j config
neo4j_uri = config.get("neo4j", "uri", fallback=None) neo4j_uri = config.get("neo4j", "uri", fallback=None)
@@ -79,7 +84,7 @@ if neo4j_uri:
os.environ["NEO4J_URI"] = neo4j_uri os.environ["NEO4J_URI"] = neo4j_uri
os.environ["NEO4J_USERNAME"] = neo4j_username os.environ["NEO4J_USERNAME"] = neo4j_username
os.environ["NEO4J_PASSWORD"] = neo4j_password os.environ["NEO4J_PASSWORD"] = neo4j_password
GRAPH_STORAGE = "Neo4JStorage" ollama_server_infos.GRAPH_STORAGE = "Neo4JStorage"
# Milvus config # Milvus config
milvus_uri = config.get("milvus", "uri", fallback=None) milvus_uri = config.get("milvus", "uri", fallback=None)
@@ -91,7 +96,7 @@ if milvus_uri:
os.environ["MILVUS_USER"] = milvus_user os.environ["MILVUS_USER"] = milvus_user
os.environ["MILVUS_PASSWORD"] = milvus_password os.environ["MILVUS_PASSWORD"] = milvus_password
os.environ["MILVUS_DB_NAME"] = milvus_db_name os.environ["MILVUS_DB_NAME"] = milvus_db_name
VECTOR_STORAGE = "MilvusVectorDBStorge" ollama_server_infos.VECTOR_STORAGE = "MilvusVectorDBStorge"
# MongoDB config # MongoDB config
mongo_uri = config.get("mongodb", "uri", fallback=None) mongo_uri = config.get("mongodb", "uri", fallback=None)
@@ -99,8 +104,8 @@ mongo_database = config.get("mongodb", "LightRAG", fallback=None)
if mongo_uri: if mongo_uri:
os.environ["MONGO_URI"] = mongo_uri os.environ["MONGO_URI"] = mongo_uri
os.environ["MONGO_DATABASE"] = mongo_database os.environ["MONGO_DATABASE"] = mongo_database
KV_STORAGE = "MongoKVStorage" ollama_server_infos.KV_STORAGE = "MongoKVStorage"
DOC_STATUS_STORAGE = "MongoKVStorage" ollama_server_infos.DOC_STATUS_STORAGE = "MongoKVStorage"
def get_default_host(binding_type: str) -> str: def get_default_host(binding_type: str) -> str:
@@ -217,7 +222,7 @@ def display_splash_screen(args: argparse.Namespace) -> None:
# System Configuration # System Configuration
ASCIIColors.magenta("\n🛠️ System Configuration:") ASCIIColors.magenta("\n🛠️ System Configuration:")
ASCIIColors.white(" ├─ Ollama Emulating Model: ", end="") ASCIIColors.white(" ├─ Ollama Emulating Model: ", end="")
ASCIIColors.yellow(f"{LIGHTRAG_MODEL}") ASCIIColors.yellow(f"{ollama_server_infos.LIGHTRAG_MODEL}")
ASCIIColors.white(" ├─ Log Level: ", end="") ASCIIColors.white(" ├─ Log Level: ", end="")
ASCIIColors.yellow(f"{args.log_level}") ASCIIColors.yellow(f"{args.log_level}")
ASCIIColors.white(" ├─ Timeout: ", end="") ASCIIColors.white(" ├─ Timeout: ", end="")
@@ -502,8 +507,19 @@ def parse_args() -> argparse.Namespace:
help="Cosine similarity threshold (default: from env or 0.4)", help="Cosine similarity threshold (default: from env or 0.4)",
) )
parser.add_argument(
"--simulated-model-name",
type=str,
default=get_env_value(
"SIMULATED_MODEL_NAME", ollama_server_infos.LIGHTRAG_MODEL
),
help="Number of conversation history turns to include (default: from env or 3)",
)
args = parser.parse_args() args = parser.parse_args()
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
return args return args
@@ -556,7 +572,7 @@ class OllamaMessage(BaseModel):
class OllamaChatRequest(BaseModel): class OllamaChatRequest(BaseModel):
model: str = LIGHTRAG_MODEL model: str = ollama_server_infos.LIGHTRAG_MODEL
messages: List[OllamaMessage] messages: List[OllamaMessage]
stream: bool = True # Default to streaming mode stream: bool = True # Default to streaming mode
options: Optional[Dict[str, Any]] = None options: Optional[Dict[str, Any]] = None
@@ -571,7 +587,7 @@ class OllamaChatResponse(BaseModel):
class OllamaGenerateRequest(BaseModel): class OllamaGenerateRequest(BaseModel):
model: str = LIGHTRAG_MODEL model: str = ollama_server_infos.LIGHTRAG_MODEL
prompt: str prompt: str
system: Optional[str] = None system: Optional[str] = None
stream: bool = False stream: bool = False
@@ -860,10 +876,10 @@ def create_app(args):
if args.llm_binding == "lollms" or args.llm_binding == "ollama" if args.llm_binding == "lollms" or args.llm_binding == "ollama"
else {}, else {},
embedding_func=embedding_func, embedding_func=embedding_func,
kv_storage=KV_STORAGE, kv_storage=ollama_server_infos.KV_STORAGE,
graph_storage=GRAPH_STORAGE, graph_storage=ollama_server_infos.GRAPH_STORAGE,
vector_storage=VECTOR_STORAGE, vector_storage=ollama_server_infos.VECTOR_STORAGE,
doc_status_storage=DOC_STATUS_STORAGE, doc_status_storage=ollama_server_infos.DOC_STATUS_STORAGE,
vector_db_storage_cls_kwargs={ vector_db_storage_cls_kwargs={
"cosine_better_than_threshold": args.cosine_threshold "cosine_better_than_threshold": args.cosine_threshold
}, },
@@ -883,10 +899,10 @@ def create_app(args):
llm_model_max_async=args.max_async, llm_model_max_async=args.max_async,
llm_model_max_token_size=args.max_tokens, llm_model_max_token_size=args.max_tokens,
embedding_func=embedding_func, embedding_func=embedding_func,
kv_storage=KV_STORAGE, kv_storage=ollama_server_infos.KV_STORAGE,
graph_storage=GRAPH_STORAGE, graph_storage=ollama_server_infos.GRAPH_STORAGE,
vector_storage=VECTOR_STORAGE, vector_storage=ollama_server_infos.VECTOR_STORAGE,
doc_status_storage=DOC_STATUS_STORAGE, doc_status_storage=ollama_server_infos.DOC_STATUS_STORAGE,
vector_db_storage_cls_kwargs={ vector_db_storage_cls_kwargs={
"cosine_better_than_threshold": args.cosine_threshold "cosine_better_than_threshold": args.cosine_threshold
}, },
@@ -1452,16 +1468,16 @@ def create_app(args):
return OllamaTagResponse( return OllamaTagResponse(
models=[ models=[
{ {
"name": LIGHTRAG_MODEL, "name": ollama_server_infos.LIGHTRAG_MODEL,
"model": LIGHTRAG_MODEL, "model": ollama_server_infos.LIGHTRAG_MODEL,
"size": LIGHTRAG_SIZE, "size": ollama_server_infos.LIGHTRAG_SIZE,
"digest": LIGHTRAG_DIGEST, "digest": ollama_server_infos.LIGHTRAG_DIGEST,
"modified_at": LIGHTRAG_CREATED_AT, "modified_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"details": { "details": {
"parent_model": "", "parent_model": "",
"format": "gguf", "format": "gguf",
"family": LIGHTRAG_NAME, "family": ollama_server_infos.LIGHTRAG_NAME,
"families": [LIGHTRAG_NAME], "families": [ollama_server_infos.LIGHTRAG_NAME],
"parameter_size": "13B", "parameter_size": "13B",
"quantization_level": "Q4_0", "quantization_level": "Q4_0",
}, },
@@ -1524,8 +1540,8 @@ def create_app(args):
total_response = response total_response = response
data = { data = {
"model": LIGHTRAG_MODEL, "model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT, "created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"response": response, "response": response,
"done": False, "done": False,
} }
@@ -1537,8 +1553,8 @@ def create_app(args):
eval_time = last_chunk_time - first_chunk_time eval_time = last_chunk_time - first_chunk_time
data = { data = {
"model": LIGHTRAG_MODEL, "model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT, "created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"done": True, "done": True,
"total_duration": total_time, "total_duration": total_time,
"load_duration": 0, "load_duration": 0,
@@ -1558,8 +1574,8 @@ def create_app(args):
total_response += chunk total_response += chunk
data = { data = {
"model": LIGHTRAG_MODEL, "model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT, "created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"response": chunk, "response": chunk,
"done": False, "done": False,
} }
@@ -1571,8 +1587,8 @@ def create_app(args):
eval_time = last_chunk_time - first_chunk_time eval_time = last_chunk_time - first_chunk_time
data = { data = {
"model": LIGHTRAG_MODEL, "model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT, "created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"done": True, "done": True,
"total_duration": total_time, "total_duration": total_time,
"load_duration": 0, "load_duration": 0,
@@ -1616,8 +1632,8 @@ def create_app(args):
eval_time = last_chunk_time - first_chunk_time eval_time = last_chunk_time - first_chunk_time
return { return {
"model": LIGHTRAG_MODEL, "model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT, "created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"response": str(response_text), "response": str(response_text),
"done": True, "done": True,
"total_duration": total_time, "total_duration": total_time,
@@ -1690,8 +1706,8 @@ def create_app(args):
total_response = response total_response = response
data = { data = {
"model": LIGHTRAG_MODEL, "model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT, "created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"message": { "message": {
"role": "assistant", "role": "assistant",
"content": response, "content": response,
@@ -1707,8 +1723,8 @@ def create_app(args):
eval_time = last_chunk_time - first_chunk_time eval_time = last_chunk_time - first_chunk_time
data = { data = {
"model": LIGHTRAG_MODEL, "model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT, "created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"done": True, "done": True,
"total_duration": total_time, "total_duration": total_time,
"load_duration": 0, "load_duration": 0,
@@ -1728,8 +1744,8 @@ def create_app(args):
total_response += chunk total_response += chunk
data = { data = {
"model": LIGHTRAG_MODEL, "model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT, "created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"message": { "message": {
"role": "assistant", "role": "assistant",
"content": chunk, "content": chunk,
@@ -1745,8 +1761,8 @@ def create_app(args):
eval_time = last_chunk_time - first_chunk_time eval_time = last_chunk_time - first_chunk_time
data = { data = {
"model": LIGHTRAG_MODEL, "model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT, "created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"done": True, "done": True,
"total_duration": total_time, "total_duration": total_time,
"load_duration": 0, "load_duration": 0,
@@ -1801,8 +1817,8 @@ def create_app(args):
eval_time = last_chunk_time - first_chunk_time eval_time = last_chunk_time - first_chunk_time
return { return {
"model": LIGHTRAG_MODEL, "model": ollama_server_infos.LIGHTRAG_MODEL,
"created_at": LIGHTRAG_CREATED_AT, "created_at": ollama_server_infos.LIGHTRAG_CREATED_AT,
"message": { "message": {
"role": "assistant", "role": "assistant",
"content": str(response_text), "content": str(response_text),
@@ -1845,10 +1861,10 @@ def create_app(args):
"embedding_binding_host": args.embedding_binding_host, "embedding_binding_host": args.embedding_binding_host,
"embedding_model": args.embedding_model, "embedding_model": args.embedding_model,
"max_tokens": args.max_tokens, "max_tokens": args.max_tokens,
"kv_storage": KV_STORAGE, "kv_storage": ollama_server_infos.KV_STORAGE,
"doc_status_storage": DOC_STATUS_STORAGE, "doc_status_storage": ollama_server_infos.DOC_STATUS_STORAGE,
"graph_storage": GRAPH_STORAGE, "graph_storage": ollama_server_infos.GRAPH_STORAGE,
"vector_storage": VECTOR_STORAGE, "vector_storage": ollama_server_infos.VECTOR_STORAGE,
}, },
} }

View File

@@ -2,15 +2,18 @@ import os
from tqdm.asyncio import tqdm as tqdm_async from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import dataclass from dataclasses import dataclass
import pipmaster as pm import pipmaster as pm
import np
if not pm.is_installed("pymongo"): if not pm.is_installed("pymongo"):
pm.install("pymongo") pm.install("pymongo")
from pymongo import MongoClient from pymongo import MongoClient
from typing import Union from motor.motor_asyncio import AsyncIOMotorClient
from typing import Union, List, Tuple
from lightrag.utils import logger from lightrag.utils import logger
from lightrag.base import BaseKVStorage from lightrag.base import BaseKVStorage
from lightrag.base import BaseGraphStorage
@dataclass @dataclass
@@ -78,3 +81,360 @@ class MongoKVStorage(BaseKVStorage):
async def drop(self): async def drop(self):
""" """ """ """
pass pass
@dataclass
class MongoGraphStorage(BaseGraphStorage):
"""
A concrete implementation using MongoDBs $graphLookup to demonstrate multi-hop queries.
"""
def __init__(self, namespace, global_config, embedding_func):
super().__init__(
namespace=namespace,
global_config=global_config,
embedding_func=embedding_func,
)
self.client = AsyncIOMotorClient(
os.environ.get("MONGO_URI", "mongodb://root:root@localhost:27017/")
)
self.db = self.client[os.environ.get("MONGO_DATABASE", "LightRAG")]
self.collection = self.db[os.environ.get("MONGO_KG_COLLECTION", "MDB_KG")]
#
# -------------------------------------------------------------------------
# HELPER: $graphLookup pipeline
# -------------------------------------------------------------------------
#
async def _graph_lookup(
self, start_node_id: str, max_depth: int = None
) -> List[dict]:
"""
Performs a $graphLookup starting from 'start_node_id' and returns
all reachable documents (including the start node itself).
Pipeline Explanation:
- 1) $match: We match the start node document by _id = start_node_id.
- 2) $graphLookup:
"from": same collection,
"startWith": "$edges.target" (the immediate neighbors in 'edges'),
"connectFromField": "edges.target",
"connectToField": "_id",
"as": "reachableNodes",
"maxDepth": max_depth (if provided),
"depthField": "depth" (used for debugging or filtering).
- 3) We add an $project or $unwind as needed to extract data.
"""
pipeline = [
{"$match": {"_id": start_node_id}},
{
"$graphLookup": {
"from": self.collection.name,
"startWith": "$edges.target",
"connectFromField": "edges.target",
"connectToField": "_id",
"as": "reachableNodes",
"depthField": "depth",
}
},
]
# If you want a limited depth (e.g., only 1 or 2 hops), set maxDepth
if max_depth is not None:
pipeline[1]["$graphLookup"]["maxDepth"] = max_depth
# Return the matching doc plus a field "reachableNodes"
cursor = self.collection.aggregate(pipeline)
results = await cursor.to_list(None)
# If there's no matching node, results = [].
# Otherwise, results[0] is the start node doc,
# plus results[0]["reachableNodes"] is the array of connected docs.
return results
#
# -------------------------------------------------------------------------
# BASIC QUERIES
# -------------------------------------------------------------------------
#
async def has_node(self, node_id: str) -> bool:
"""
Check if node_id is present in the collection by looking up its doc.
No real need for $graphLookup here, but let's keep it direct.
"""
doc = await self.collection.find_one({"_id": node_id}, {"_id": 1})
return doc is not None
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
"""
Check if there's a direct single-hop edge from source_node_id to target_node_id.
We'll do a $graphLookup with maxDepth=0 from the source node—meaning
“Look up zero expansions.” Actually, for a direct edge check, we can do maxDepth=1
and then see if the target node is in the "reachableNodes" at depth=0.
But typically for a direct edge, we might just do a find_one.
Below is a demonstration approach.
"""
# We can do a single-hop graphLookup (maxDepth=0 or 1).
# Then check if the target_node appears among the edges array.
pipeline = [
{"$match": {"_id": source_node_id}},
{
"$graphLookup": {
"from": self.collection.name,
"startWith": "$edges.target",
"connectFromField": "edges.target",
"connectToField": "_id",
"as": "reachableNodes",
"depthField": "depth",
"maxDepth": 0, # means: do not follow beyond immediate edges
}
},
{
"$project": {
"_id": 0,
"reachableNodes._id": 1, # only keep the _id from the subdocs
}
},
]
cursor = self.collection.aggregate(pipeline)
results = await cursor.to_list(None)
if not results:
return False
# results[0]["reachableNodes"] are the immediate neighbors
reachable_ids = [d["_id"] for d in results[0].get("reachableNodes", [])]
return target_node_id in reachable_ids
#
# -------------------------------------------------------------------------
# DEGREES
# -------------------------------------------------------------------------
#
async def node_degree(self, node_id: str) -> int:
"""
Returns the total number of edges connected to node_id (both inbound and outbound).
The easiest approach is typically two queries:
- count of edges array in node_id's doc
- count of how many other docs have node_id in their edges.target.
But we'll do a $graphLookup demonstration for inbound edges:
1) Outbound edges: direct from node's edges array
2) Inbound edges: we can do a special $graphLookup from all docs
or do an explicit match.
For demonstration, let's do this in two steps (with second step $graphLookup).
"""
# --- 1) Outbound edges (direct from doc) ---
doc = await self.collection.find_one({"_id": node_id}, {"edges": 1})
if not doc:
return 0
outbound_count = len(doc.get("edges", []))
# --- 2) Inbound edges:
# A simple way is: find all docs where "edges.target" == node_id.
# But let's do a $graphLookup from `node_id` in REVERSE.
# There's a trick to do "reverse" graphLookups: you'd store
# reversed edges or do a more advanced pipeline. Typically you'd do
# a direct match. We'll just do a direct match for inbound.
inbound_count_pipeline = [
{"$match": {"edges.target": node_id}},
{
"$project": {
"matchingEdgesCount": {
"$size": {
"$filter": {
"input": "$edges",
"as": "edge",
"cond": {"$eq": ["$$edge.target", node_id]},
}
}
}
}
},
{"$group": {"_id": None, "totalInbound": {"$sum": "$matchingEdgesCount"}}},
]
inbound_cursor = self.collection.aggregate(inbound_count_pipeline)
inbound_result = await inbound_cursor.to_list(None)
inbound_count = inbound_result[0]["totalInbound"] if inbound_result else 0
return outbound_count + inbound_count
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
"""
If your graph can hold multiple edges from the same src to the same tgt
(e.g. different 'relation' values), you can sum them. If it's always
one edge, this is typically 1 or 0.
We'll do a single-hop $graphLookup from src_id,
then count how many edges reference tgt_id at depth=0.
"""
pipeline = [
{"$match": {"_id": src_id}},
{
"$graphLookup": {
"from": self.collection.name,
"startWith": "$edges.target",
"connectFromField": "edges.target",
"connectToField": "_id",
"as": "neighbors",
"depthField": "depth",
"maxDepth": 0,
}
},
{"$project": {"edges": 1, "neighbors._id": 1, "neighbors.type": 1}},
]
cursor = self.collection.aggregate(pipeline)
results = await cursor.to_list(None)
if not results:
return 0
# We can simply count how many edges in `results[0].edges` have target == tgt_id.
edges = results[0].get("edges", [])
count = sum(1 for e in edges if e.get("target") == tgt_id)
return count
#
# -------------------------------------------------------------------------
# GETTERS
# -------------------------------------------------------------------------
#
async def get_node(self, node_id: str) -> Union[dict, None]:
"""
Return the full node document (including "edges"), or None if missing.
"""
return await self.collection.find_one({"_id": node_id})
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> Union[dict, None]:
"""
Return the first edge dict from source_node_id to target_node_id if it exists.
Uses a single-hop $graphLookup as demonstration, though a direct find is simpler.
"""
pipeline = [
{"$match": {"_id": source_node_id}},
{
"$graphLookup": {
"from": self.collection.name,
"startWith": "$edges.target",
"connectFromField": "edges.target",
"connectToField": "_id",
"as": "neighbors",
"depthField": "depth",
"maxDepth": 0,
}
},
{"$project": {"edges": 1}},
]
cursor = self.collection.aggregate(pipeline)
docs = await cursor.to_list(None)
if not docs:
return None
for e in docs[0].get("edges", []):
if e.get("target") == target_node_id:
return e
return None
async def get_node_edges(
self, source_node_id: str
) -> Union[List[Tuple[str, str]], None]:
"""
Return a list of (target_id, relation) for direct edges from source_node_id.
Demonstrates $graphLookup at maxDepth=0, though direct doc retrieval is simpler.
"""
pipeline = [
{"$match": {"_id": source_node_id}},
{
"$graphLookup": {
"from": self.collection.name,
"startWith": "$edges.target",
"connectFromField": "edges.target",
"connectToField": "_id",
"as": "neighbors",
"depthField": "depth",
"maxDepth": 0,
}
},
{"$project": {"_id": 0, "edges": 1}},
]
cursor = self.collection.aggregate(pipeline)
result = await cursor.to_list(None)
if not result:
return None
edges = result[0].get("edges", [])
return [(e["target"], e["relation"]) for e in edges]
#
# -------------------------------------------------------------------------
# UPSERTS
# -------------------------------------------------------------------------
#
async def upsert_node(self, node_id: str, node_data: dict):
"""
Insert or update a node document. If new, create an empty edges array.
"""
# By default, preserve existing 'edges'.
# We'll only set 'edges' to [] on insert (no overwrite).
update_doc = {"$set": {**node_data}, "$setOnInsert": {"edges": []}}
await self.collection.update_one({"_id": node_id}, update_doc, upsert=True)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict
):
"""
Upsert an edge from source_node_id -> target_node_id with optional 'relation'.
If an edge with the same target exists, we remove it and re-insert with updated data.
"""
# Ensure source node exists
await self.upsert_node(source_node_id, {})
# Remove existing edge (if any)
await self.collection.update_one(
{"_id": source_node_id}, {"$pull": {"edges": {"target": target_node_id}}}
)
# Insert new edge
new_edge = {"target": target_node_id}
new_edge.update(edge_data)
await self.collection.update_one(
{"_id": source_node_id}, {"$push": {"edges": new_edge}}
)
#
# -------------------------------------------------------------------------
# DELETION
# -------------------------------------------------------------------------
#
async def delete_node(self, node_id: str):
"""
1) Remove nodes doc entirely.
2) Remove inbound edges from any doc that references node_id.
"""
# Remove inbound edges from all other docs
await self.collection.update_many({}, {"$pull": {"edges": {"target": node_id}}})
# Remove the node doc
await self.collection.delete_one({"_id": node_id})
#
# -------------------------------------------------------------------------
# EMBEDDINGS (NOT IMPLEMENTED)
# -------------------------------------------------------------------------
#
async def embed_nodes(self, algorithm: str) -> Tuple[np.ndarray, List[str]]:
"""
Placeholder for demonstration, raises NotImplementedError.
"""
raise NotImplementedError("Node embedding is not used in lightrag.")

View File

@@ -48,6 +48,7 @@ STORAGES = {
"OracleVectorDBStorage": ".kg.oracle_impl", "OracleVectorDBStorage": ".kg.oracle_impl",
"MilvusVectorDBStorge": ".kg.milvus_impl", "MilvusVectorDBStorge": ".kg.milvus_impl",
"MongoKVStorage": ".kg.mongo_impl", "MongoKVStorage": ".kg.mongo_impl",
"MongoGraphStorage": ".kg.mongo_impl",
"RedisKVStorage": ".kg.redis_impl", "RedisKVStorage": ".kg.redis_impl",
"ChromaVectorDBStorage": ".kg.chroma_impl", "ChromaVectorDBStorage": ".kg.chroma_impl",
"TiDBKVStorage": ".kg.tidb_impl", "TiDBKVStorage": ".kg.tidb_impl",