Update Ollama sample code
This commit is contained in:
@@ -1,19 +1,84 @@
|
||||
import asyncio
|
||||
import nest_asyncio
|
||||
|
||||
import os
|
||||
import inspect
|
||||
import logging
|
||||
import logging.config
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
|
||||
nest_asyncio.apply()
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv(dotenv_path=".env", override=False)
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
||||
|
||||
def configure_logging():
|
||||
"""Configure logging for the application"""
|
||||
|
||||
# Reset any existing handlers to ensure clean configuration
|
||||
for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]:
|
||||
logger_instance = logging.getLogger(logger_name)
|
||||
logger_instance.handlers = []
|
||||
logger_instance.filters = []
|
||||
|
||||
# Get log directory path from environment variable or use current directory
|
||||
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||
log_file_path = os.path.abspath(
|
||||
os.path.join(log_dir, "lightrag_ollama_demo.log")
|
||||
)
|
||||
|
||||
print(f"\nLightRAG compatible demo log file: {log_file_path}\n")
|
||||
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
|
||||
|
||||
# Get log file max size and backup count from environment variables
|
||||
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||
|
||||
logging.config.dictConfig(
|
||||
{
|
||||
"version": 1,
|
||||
"disable_existing_loggers": False,
|
||||
"formatters": {
|
||||
"default": {
|
||||
"format": "%(levelname)s: %(message)s",
|
||||
},
|
||||
"detailed": {
|
||||
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
||||
},
|
||||
},
|
||||
"handlers": {
|
||||
"console": {
|
||||
"formatter": "default",
|
||||
"class": "logging.StreamHandler",
|
||||
"stream": "ext://sys.stderr",
|
||||
},
|
||||
"file": {
|
||||
"formatter": "detailed",
|
||||
"class": "logging.handlers.RotatingFileHandler",
|
||||
"filename": log_file_path,
|
||||
"maxBytes": log_max_bytes,
|
||||
"backupCount": log_backup_count,
|
||||
"encoding": "utf-8",
|
||||
},
|
||||
},
|
||||
"loggers": {
|
||||
"lightrag": {
|
||||
"handlers": ["console", "file"],
|
||||
"level": "INFO",
|
||||
"propagate": False,
|
||||
},
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
# Set the logger level to INFO
|
||||
logger.setLevel(logging.INFO)
|
||||
# Enable verbose debug if needed
|
||||
set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true")
|
||||
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
@@ -23,18 +88,20 @@ async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="gemma2:2b",
|
||||
llm_model_max_async=4,
|
||||
llm_model_max_token_size=32768,
|
||||
llm_model_name=os.getenv("LLM_MODEL", "qwen2.5-coder:7b"),
|
||||
llm_model_max_token_size=8192,
|
||||
llm_model_kwargs={
|
||||
"host": "http://localhost:11434",
|
||||
"options": {"num_ctx": 32768},
|
||||
"host": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
|
||||
"options": {"num_ctx": 8192},
|
||||
"timeout": int(os.getenv("TIMEOUT", "300")),
|
||||
},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
embedding_dim=int(os.getenv("EMBEDDING_DIM", "1024")),
|
||||
max_token_size=int(os.getenv("MAX_EMBED_TOKENS", "8192")),
|
||||
func=lambda texts: ollama_embed(
|
||||
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||
texts,
|
||||
embed_model=os.getenv("EMBEDDING_MODEL", "bge-m3:latest"),
|
||||
host=os.getenv("EMBEDDING_BINDING_HOST", "http://localhost:11434"),
|
||||
),
|
||||
),
|
||||
)
|
||||
@@ -50,54 +117,102 @@ async def print_stream(stream):
|
||||
print(chunk, end="", flush=True)
|
||||
|
||||
|
||||
def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
async def main():
|
||||
try:
|
||||
# Clear old data files
|
||||
files_to_delete = [
|
||||
"graph_chunk_entity_relation.graphml",
|
||||
"kv_store_doc_status.json",
|
||||
"kv_store_full_docs.json",
|
||||
"kv_store_text_chunks.json",
|
||||
"vdb_chunks.json",
|
||||
"vdb_entities.json",
|
||||
"vdb_relationships.json",
|
||||
]
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
for file in files_to_delete:
|
||||
file_path = os.path.join(WORKING_DIR, file)
|
||||
if os.path.exists(file_path):
|
||||
os.remove(file_path)
|
||||
print(f"Deleting old file:: {file_path}")
|
||||
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
# Initialize RAG instance
|
||||
rag = await initialize_rag()
|
||||
|
||||
# Test embedding function
|
||||
test_text = ["This is a test string for embedding."]
|
||||
embedding = await rag.embedding_func(test_text)
|
||||
embedding_dim = embedding.shape[1]
|
||||
print("\n=======================")
|
||||
print("Test embedding function")
|
||||
print("========================")
|
||||
print(f"Test dict: {test_text}")
|
||||
print(f"Detected embedding dimension: {embedding_dim}\n\n")
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print("\n=====================")
|
||||
print("Query mode: naive")
|
||||
print("=====================")
|
||||
resp = await rag.aquery(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="naive", stream=True),
|
||||
)
|
||||
)
|
||||
if inspect.isasyncgen(resp):
|
||||
await print_stream(resp)
|
||||
else:
|
||||
print(resp)
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||
# Perform local search
|
||||
print("\n=====================")
|
||||
print("Query mode: local")
|
||||
print("=====================")
|
||||
resp = await rag.aquery(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="local", stream=True),
|
||||
)
|
||||
)
|
||||
if inspect.isasyncgen(resp):
|
||||
await print_stream(resp)
|
||||
else:
|
||||
print(resp)
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="global")
|
||||
# Perform global search
|
||||
print("\n=====================")
|
||||
print("Query mode: global")
|
||||
print("=====================")
|
||||
resp = await rag.aquery(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="global", stream=True),
|
||||
)
|
||||
)
|
||||
if inspect.isasyncgen(resp):
|
||||
await print_stream(resp)
|
||||
else:
|
||||
print(resp)
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
||||
# Perform hybrid search
|
||||
print("\n=====================")
|
||||
print("Query mode: hybrid")
|
||||
print("=====================")
|
||||
resp = await rag.aquery(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
)
|
||||
|
||||
# stream response
|
||||
resp = rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid", stream=True),
|
||||
)
|
||||
|
||||
if inspect.isasyncgen(resp):
|
||||
asyncio.run(print_stream(resp))
|
||||
else:
|
||||
print(resp)
|
||||
if inspect.isasyncgen(resp):
|
||||
await print_stream(resp)
|
||||
else:
|
||||
print(resp)
|
||||
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
finally:
|
||||
if rag:
|
||||
await rag.llm_response_cache.index_done_callback()
|
||||
await rag.finalize_storages()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
# Configure logging before running the main function
|
||||
configure_logging()
|
||||
asyncio.run(main())
|
||||
print("\nDone!")
|
||||
|
Reference in New Issue
Block a user