Update Ollama sample code

This commit is contained in:
yangdx
2025-05-14 01:14:15 +08:00
parent b836d02cac
commit 5c9fd9c4d2

View File

@@ -1,19 +1,84 @@
import asyncio
import nest_asyncio
import os
import inspect
import logging
import logging.config
from lightrag import LightRAG, QueryParam
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
from lightrag.utils import EmbeddingFunc
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
from lightrag.kg.shared_storage import initialize_pipeline_status
nest_asyncio.apply()
from dotenv import load_dotenv
load_dotenv(dotenv_path=".env", override=False)
WORKING_DIR = "./dickens"
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
def configure_logging():
"""Configure logging for the application"""
# Reset any existing handlers to ensure clean configuration
for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]:
logger_instance = logging.getLogger(logger_name)
logger_instance.handlers = []
logger_instance.filters = []
# Get log directory path from environment variable or use current directory
log_dir = os.getenv("LOG_DIR", os.getcwd())
log_file_path = os.path.abspath(
os.path.join(log_dir, "lightrag_ollama_demo.log")
)
print(f"\nLightRAG compatible demo log file: {log_file_path}\n")
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
# Get log file max size and backup count from environment variables
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
logging.config.dictConfig(
{
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"default": {
"format": "%(levelname)s: %(message)s",
},
"detailed": {
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
},
},
"handlers": {
"console": {
"formatter": "default",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
"file": {
"formatter": "detailed",
"class": "logging.handlers.RotatingFileHandler",
"filename": log_file_path,
"maxBytes": log_max_bytes,
"backupCount": log_backup_count,
"encoding": "utf-8",
},
},
"loggers": {
"lightrag": {
"handlers": ["console", "file"],
"level": "INFO",
"propagate": False,
},
},
}
)
# Set the logger level to INFO
logger.setLevel(logging.INFO)
# Enable verbose debug if needed
set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
@@ -23,18 +88,20 @@ async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete,
llm_model_name="gemma2:2b",
llm_model_max_async=4,
llm_model_max_token_size=32768,
llm_model_name=os.getenv("LLM_MODEL", "qwen2.5-coder:7b"),
llm_model_max_token_size=8192,
llm_model_kwargs={
"host": "http://localhost:11434",
"options": {"num_ctx": 32768},
"host": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
"options": {"num_ctx": 8192},
"timeout": int(os.getenv("TIMEOUT", "300")),
},
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
embedding_dim=int(os.getenv("EMBEDDING_DIM", "1024")),
max_token_size=int(os.getenv("MAX_EMBED_TOKENS", "8192")),
func=lambda texts: ollama_embed(
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
texts,
embed_model=os.getenv("EMBEDDING_MODEL", "bge-m3:latest"),
host=os.getenv("EMBEDDING_BINDING_HOST", "http://localhost:11434"),
),
),
)
@@ -50,54 +117,102 @@ async def print_stream(stream):
print(chunk, end="", flush=True)
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
async def main():
try:
# Clear old data files
files_to_delete = [
"graph_chunk_entity_relation.graphml",
"kv_store_doc_status.json",
"kv_store_full_docs.json",
"kv_store_text_chunks.json",
"vdb_chunks.json",
"vdb_entities.json",
"vdb_relationships.json",
]
# Insert example text
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
for file in files_to_delete:
file_path = os.path.join(WORKING_DIR, file)
if os.path.exists(file_path):
os.remove(file_path)
print(f"Deleting old file:: {file_path}")
# Test different query modes
print("\nNaive Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="naive")
# Initialize RAG instance
rag = await initialize_rag()
# Test embedding function
test_text = ["This is a test string for embedding."]
embedding = await rag.embedding_func(test_text)
embedding_dim = embedding.shape[1]
print("\n=======================")
print("Test embedding function")
print("========================")
print(f"Test dict: {test_text}")
print(f"Detected embedding dimension: {embedding_dim}\n\n")
with open("./book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())
# Perform naive search
print("\n=====================")
print("Query mode: naive")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="naive", stream=True),
)
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
print("\nLocal Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="local")
# Perform local search
print("\n=====================")
print("Query mode: local")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="local", stream=True),
)
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
print("\nGlobal Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="global")
# Perform global search
print("\n=====================")
print("Query mode: global")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="global", stream=True),
)
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
print("\nHybrid Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
# Perform hybrid search
print("\n=====================")
print("Query mode: hybrid")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid", stream=True),
)
)
# stream response
resp = rag.query(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid", stream=True),
)
if inspect.isasyncgen(resp):
asyncio.run(print_stream(resp))
else:
print(resp)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
except Exception as e:
print(f"An error occurred: {e}")
finally:
if rag:
await rag.llm_response_cache.index_done_callback()
await rag.finalize_storages()
if __name__ == "__main__":
main()
# Configure logging before running the main function
configure_logging()
asyncio.run(main())
print("\nDone!")