diff --git a/examples/lightrag_yangdx.py b/examples/lightrag_yangdx.py deleted file mode 100644 index 2691deac..00000000 --- a/examples/lightrag_yangdx.py +++ /dev/null @@ -1,82 +0,0 @@ -import os -# import asyncio -# import inspect -import logging -from dotenv import load_dotenv -from lightrag import LightRAG, QueryParam -from lightrag.llm import openai_complete_if_cache, ollama_embedding -from lightrag.utils import EmbeddingFunc - -load_dotenv() - -WORKING_DIR = "./examples/output" - -logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO) - -async def llm_model_func( - prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs -) -> str: - return await openai_complete_if_cache( - "deepseek-chat", - prompt, - system_prompt=system_prompt, - history_messages=history_messages, - api_key=os.getenv("DEEPSEEK_API_KEY"), - base_url=os.getenv("DEEPSEEK_ENDPOINT"), - **kwargs, - ) - -if not os.path.exists(WORKING_DIR): - os.mkdir(WORKING_DIR) - -rag = LightRAG( - working_dir=WORKING_DIR, - llm_model_func=llm_model_func, - embedding_func=EmbeddingFunc( - embedding_dim=1024, - max_token_size=8192, - func=lambda texts: ollama_embedding( - texts, embed_model="bge-m3:latest", host="http://m4.lan.znipower.com:11434" - ), - ), -) - -with open("./examples/input/book.txt", "r", encoding="utf-8") as f: - rag.insert(f.read()) - -# Perform naive search -print( - rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) -) - -# Perform local search -print( - rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) -) - -# Perform global search -print( - rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) -) - -# Perform hybrid search -print( - rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) -) - -# # stream response -# resp = rag.query( -# "What are the top themes in this story?", -# param=QueryParam(mode="hybrid", stream=True), -# ) - - -# async def print_stream(stream): -# async for chunk in stream: -# print(chunk, end="", flush=True) - - -# if inspect.isasyncgen(resp): -# asyncio.run(print_stream(resp)) -# else: -# print(resp)