Merge branch 'HKUDS:main' into main
This commit is contained in:
@@ -2,12 +2,15 @@
|
||||
import os
|
||||
import logging
|
||||
from lightrag.kg.shared_storage import finalize_share_data
|
||||
from lightrag.api.lightrag_server import LightragPathFilter
|
||||
from lightrag.utils import setup_logger
|
||||
|
||||
# Get log directory path from environment variable
|
||||
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
||||
|
||||
# Ensure log directory exists
|
||||
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
|
||||
|
||||
# Get log file max size and backup count from environment variables
|
||||
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||
@@ -108,6 +111,9 @@ def on_starting(server):
|
||||
except ImportError:
|
||||
print("psutil not installed, skipping memory usage reporting")
|
||||
|
||||
# Log the location of the LightRAG log file
|
||||
print(f"LightRAG log file: {log_file_path}\n")
|
||||
|
||||
print("Gunicorn initialization complete, forking workers...\n")
|
||||
|
||||
|
||||
@@ -134,51 +140,18 @@ def post_fork(server, worker):
|
||||
Executed after a worker has been forked.
|
||||
This is a good place to set up worker-specific configurations.
|
||||
"""
|
||||
# Configure formatters
|
||||
detailed_formatter = logging.Formatter(
|
||||
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||
)
|
||||
simple_formatter = logging.Formatter("%(levelname)s: %(message)s")
|
||||
|
||||
def setup_logger(logger_name: str, level: str = "INFO", add_filter: bool = False):
|
||||
"""Set up a logger with console and file handlers"""
|
||||
logger_instance = logging.getLogger(logger_name)
|
||||
logger_instance.setLevel(level)
|
||||
logger_instance.handlers = [] # Clear existing handlers
|
||||
logger_instance.propagate = False
|
||||
|
||||
# Add console handler
|
||||
console_handler = logging.StreamHandler()
|
||||
console_handler.setFormatter(simple_formatter)
|
||||
console_handler.setLevel(level)
|
||||
logger_instance.addHandler(console_handler)
|
||||
|
||||
# Add file handler
|
||||
file_handler = logging.handlers.RotatingFileHandler(
|
||||
filename=log_file_path,
|
||||
maxBytes=log_max_bytes,
|
||||
backupCount=log_backup_count,
|
||||
encoding="utf-8",
|
||||
)
|
||||
file_handler.setFormatter(detailed_formatter)
|
||||
file_handler.setLevel(level)
|
||||
logger_instance.addHandler(file_handler)
|
||||
|
||||
# Add path filter if requested
|
||||
if add_filter:
|
||||
path_filter = LightragPathFilter()
|
||||
logger_instance.addFilter(path_filter)
|
||||
|
||||
# Set up main loggers
|
||||
log_level = loglevel.upper() if loglevel else "INFO"
|
||||
setup_logger("uvicorn", log_level)
|
||||
setup_logger("uvicorn.access", log_level, add_filter=True)
|
||||
setup_logger("lightrag", log_level, add_filter=True)
|
||||
setup_logger("uvicorn", log_level, add_filter=False, log_file_path=log_file_path)
|
||||
setup_logger(
|
||||
"uvicorn.access", log_level, add_filter=True, log_file_path=log_file_path
|
||||
)
|
||||
setup_logger("lightrag", log_level, add_filter=True, log_file_path=log_file_path)
|
||||
|
||||
# Set up lightrag submodule loggers
|
||||
for name in logging.root.manager.loggerDict:
|
||||
if name.startswith("lightrag."):
|
||||
setup_logger(name, log_level, add_filter=True)
|
||||
setup_logger(name, log_level, add_filter=True, log_file_path=log_file_path)
|
||||
|
||||
# Disable uvicorn.error logger
|
||||
uvicorn_error_logger = logging.getLogger("uvicorn.error")
|
||||
|
@@ -6,7 +6,6 @@ from fastapi import (
|
||||
FastAPI,
|
||||
Depends,
|
||||
)
|
||||
from fastapi.responses import FileResponse
|
||||
import asyncio
|
||||
import os
|
||||
import logging
|
||||
@@ -331,7 +330,6 @@ def create_app(args):
|
||||
"similarity_threshold": 0.95,
|
||||
"use_llm_check": False,
|
||||
},
|
||||
log_level=args.log_level,
|
||||
namespace_prefix=args.namespace_prefix,
|
||||
auto_manage_storages_states=False,
|
||||
)
|
||||
@@ -361,7 +359,6 @@ def create_app(args):
|
||||
"similarity_threshold": 0.95,
|
||||
"use_llm_check": False,
|
||||
},
|
||||
log_level=args.log_level,
|
||||
namespace_prefix=args.namespace_prefix,
|
||||
auto_manage_storages_states=False,
|
||||
)
|
||||
@@ -412,10 +409,6 @@ def create_app(args):
|
||||
name="webui",
|
||||
)
|
||||
|
||||
@app.get("/webui/")
|
||||
async def webui_root():
|
||||
return FileResponse(static_dir / "index.html")
|
||||
|
||||
return app
|
||||
|
||||
|
||||
@@ -439,6 +432,9 @@ def configure_logging():
|
||||
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
||||
|
||||
print(f"\nLightRAG log file: {log_file_path}\n")
|
||||
os.makedirs(os.path.dirname(log_dir), exist_ok=True)
|
||||
|
||||
# Get log file max size and backup count from environment variables
|
||||
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||
|
@@ -215,9 +215,29 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
| ".scss"
|
||||
| ".less"
|
||||
):
|
||||
content = file.decode("utf-8")
|
||||
try:
|
||||
# Try to decode as UTF-8
|
||||
content = file.decode("utf-8")
|
||||
|
||||
# Validate content
|
||||
if not content or len(content.strip()) == 0:
|
||||
logger.error(f"Empty content in file: {file_path.name}")
|
||||
return False
|
||||
|
||||
# Check if content looks like binary data string representation
|
||||
if content.startswith("b'") or content.startswith('b"'):
|
||||
logger.error(
|
||||
f"File {file_path.name} appears to contain binary data representation instead of text"
|
||||
)
|
||||
return False
|
||||
|
||||
except UnicodeDecodeError:
|
||||
logger.error(
|
||||
f"File {file_path.name} is not valid UTF-8 encoded text. Please convert it to UTF-8 before processing."
|
||||
)
|
||||
return False
|
||||
case ".pdf":
|
||||
if not pm.is_installed("pypdf2"):
|
||||
if not pm.is_installed("pypdf2"): # type: ignore
|
||||
pm.install("pypdf2")
|
||||
from PyPDF2 import PdfReader # type: ignore
|
||||
from io import BytesIO
|
||||
@@ -227,18 +247,18 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
for page in reader.pages:
|
||||
content += page.extract_text() + "\n"
|
||||
case ".docx":
|
||||
if not pm.is_installed("docx"):
|
||||
if not pm.is_installed("python-docx"): # type: ignore
|
||||
pm.install("docx")
|
||||
from docx import Document
|
||||
from docx import Document # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
docx_file = BytesIO(file)
|
||||
doc = Document(docx_file)
|
||||
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
||||
case ".pptx":
|
||||
if not pm.is_installed("pptx"):
|
||||
if not pm.is_installed("python-pptx"): # type: ignore
|
||||
pm.install("pptx")
|
||||
from pptx import Presentation
|
||||
from pptx import Presentation # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
pptx_file = BytesIO(file)
|
||||
@@ -248,9 +268,9 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
if hasattr(shape, "text"):
|
||||
content += shape.text + "\n"
|
||||
case ".xlsx":
|
||||
if not pm.is_installed("openpyxl"):
|
||||
if not pm.is_installed("openpyxl"): # type: ignore
|
||||
pm.install("openpyxl")
|
||||
from openpyxl import load_workbook
|
||||
from openpyxl import load_workbook # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
xlsx_file = BytesIO(file)
|
||||
|
@@ -16,12 +16,32 @@ def create_graph_routes(rag, api_key: Optional[str] = None):
|
||||
|
||||
@router.get("/graph/label/list", dependencies=[Depends(optional_api_key)])
|
||||
async def get_graph_labels():
|
||||
"""Get all graph labels"""
|
||||
"""
|
||||
Get all graph labels
|
||||
|
||||
Returns:
|
||||
List[str]: List of graph labels
|
||||
"""
|
||||
return await rag.get_graph_labels()
|
||||
|
||||
@router.get("/graphs", dependencies=[Depends(optional_api_key)])
|
||||
async def get_knowledge_graph(label: str, max_depth: int = 3):
|
||||
"""Get knowledge graph for a specific label"""
|
||||
"""
|
||||
Retrieve a connected subgraph of nodes where the label includes the specified label.
|
||||
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
|
||||
When reducing the number of nodes, the prioritization criteria are as follows:
|
||||
1. Label matching nodes take precedence
|
||||
2. Followed by nodes directly connected to the matching nodes
|
||||
3. Finally, the degree of the nodes
|
||||
Maximum number of nodes is limited to env MAX_GRAPH_NODES(default: 1000)
|
||||
|
||||
Args:
|
||||
label (str): Label to get knowledge graph for
|
||||
max_depth (int, optional): Maximum depth of graph. Defaults to 3.
|
||||
|
||||
Returns:
|
||||
Dict[str, List[str]]: Knowledge graph for label
|
||||
"""
|
||||
return await rag.get_knowledge_graph(node_label=label, max_depth=max_depth)
|
||||
|
||||
return router
|
||||
|
Reference in New Issue
Block a user