Merge branch 'HKUDS:main' into main
This commit is contained in:
1
MANIFEST.in
Normal file
1
MANIFEST.in
Normal file
@@ -0,0 +1 @@
|
||||
recursive-include lightrag/api/webui *
|
99
README.md
99
README.md
@@ -106,6 +106,9 @@ import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete, openai_embed
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
from lightrag.utils import setup_logger
|
||||
|
||||
setup_logger("lightrag", level="INFO")
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
@@ -344,6 +347,10 @@ from lightrag.llm.llama_index_impl import llama_index_complete_if_cache, llama_i
|
||||
from llama_index.embeddings.openai import OpenAIEmbedding
|
||||
from llama_index.llms.openai import OpenAI
|
||||
from lightrag.kg.shared_storage import initialize_pipeline_status
|
||||
from lightrag.utils import setup_logger
|
||||
|
||||
# Setup log handler for LightRAG
|
||||
setup_logger("lightrag", level="INFO")
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
@@ -498,44 +505,58 @@ rag.query_with_separate_keyword_extraction(
|
||||
|
||||
```python
|
||||
custom_kg = {
|
||||
"chunks": [
|
||||
{
|
||||
"content": "Alice and Bob are collaborating on quantum computing research.",
|
||||
"source_id": "doc-1"
|
||||
}
|
||||
],
|
||||
"entities": [
|
||||
{
|
||||
"entity_name": "CompanyA",
|
||||
"entity_type": "Organization",
|
||||
"description": "A major technology company",
|
||||
"source_id": "Source1"
|
||||
"entity_name": "Alice",
|
||||
"entity_type": "person",
|
||||
"description": "Alice is a researcher specializing in quantum physics.",
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"entity_name": "ProductX",
|
||||
"entity_type": "Product",
|
||||
"description": "A popular product developed by CompanyA",
|
||||
"source_id": "Source1"
|
||||
"entity_name": "Bob",
|
||||
"entity_type": "person",
|
||||
"description": "Bob is a mathematician.",
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"entity_name": "Quantum Computing",
|
||||
"entity_type": "technology",
|
||||
"description": "Quantum computing utilizes quantum mechanical phenomena for computation.",
|
||||
"source_id": "doc-1"
|
||||
}
|
||||
],
|
||||
"relationships": [
|
||||
{
|
||||
"src_id": "CompanyA",
|
||||
"tgt_id": "ProductX",
|
||||
"description": "CompanyA develops ProductX",
|
||||
"keywords": "develop, produce",
|
||||
"src_id": "Alice",
|
||||
"tgt_id": "Bob",
|
||||
"description": "Alice and Bob are research partners.",
|
||||
"keywords": "collaboration research",
|
||||
"weight": 1.0,
|
||||
"source_id": "Source1"
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"src_id": "Alice",
|
||||
"tgt_id": "Quantum Computing",
|
||||
"description": "Alice conducts research on quantum computing.",
|
||||
"keywords": "research expertise",
|
||||
"weight": 1.0,
|
||||
"source_id": "doc-1"
|
||||
},
|
||||
{
|
||||
"src_id": "Bob",
|
||||
"tgt_id": "Quantum Computing",
|
||||
"description": "Bob researches quantum computing.",
|
||||
"keywords": "research application",
|
||||
"weight": 1.0,
|
||||
"source_id": "doc-1"
|
||||
}
|
||||
],
|
||||
"chunks": [
|
||||
{
|
||||
"content": "ProductX, developed by CompanyA, has revolutionized the market with its cutting-edge features.",
|
||||
"source_id": "Source1",
|
||||
},
|
||||
{
|
||||
"content": "PersonA is a prominent researcher at UniversityB, focusing on artificial intelligence and machine learning.",
|
||||
"source_id": "Source2",
|
||||
},
|
||||
{
|
||||
"content": "None",
|
||||
"source_id": "UNKNOWN",
|
||||
},
|
||||
],
|
||||
]
|
||||
}
|
||||
|
||||
rag.insert_custom_kg(custom_kg)
|
||||
@@ -640,17 +661,27 @@ export NEO4J_URI="neo4j://localhost:7687"
|
||||
export NEO4J_USERNAME="neo4j"
|
||||
export NEO4J_PASSWORD="password"
|
||||
|
||||
# Setup logger for LightRAG
|
||||
setup_logger("lightrag", level="INFO")
|
||||
|
||||
# When you launch the project be sure to override the default KG: NetworkX
|
||||
# by specifying kg="Neo4JStorage".
|
||||
|
||||
# Note: Default settings use NetworkX
|
||||
# Initialize LightRAG with Neo4J implementation.
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
graph_storage="Neo4JStorage", #<-----------override KG default
|
||||
log_level="DEBUG" #<-----------override log_level default
|
||||
)
|
||||
|
||||
# Initialize database connections
|
||||
await rag.initialize_storages()
|
||||
# Initialize pipeline status for document processing
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
```
|
||||
see test_neo4j.py for a working example.
|
||||
|
||||
@@ -754,7 +785,8 @@ rag.delete_by_doc_id("doc_id")
|
||||
|
||||
LightRAG now supports comprehensive knowledge graph management capabilities, allowing you to create, edit, and delete entities and relationships within your knowledge graph.
|
||||
|
||||
### Create Entities and Relations
|
||||
<details>
|
||||
<summary> <b>Create Entities and Relations</b> </summary>
|
||||
|
||||
```python
|
||||
# Create new entity
|
||||
@@ -776,8 +808,10 @@ relation = rag.create_relation("Google", "Gmail", {
|
||||
"weight": 2.0
|
||||
})
|
||||
```
|
||||
</details>
|
||||
|
||||
### Edit Entities and Relations
|
||||
<details>
|
||||
<summary> <b>Edit Entities and Relations</b> </summary>
|
||||
|
||||
```python
|
||||
# Edit an existing entity
|
||||
@@ -799,6 +833,7 @@ updated_relation = rag.edit_relation("Google", "Google Mail", {
|
||||
"weight": 3.0
|
||||
})
|
||||
```
|
||||
</details>
|
||||
|
||||
All operations are available in both synchronous and asynchronous versions. The asynchronous versions have the prefix "a" (e.g., `acreate_entity`, `aedit_relation`).
|
||||
|
||||
@@ -859,7 +894,6 @@ Valid modes are:
|
||||
| **kv\_storage** | `str` | Storage type for documents and text chunks. Supported types: `JsonKVStorage`, `OracleKVStorage` | `JsonKVStorage` |
|
||||
| **vector\_storage** | `str` | Storage type for embedding vectors. Supported types: `NanoVectorDBStorage`, `OracleVectorDBStorage` | `NanoVectorDBStorage` |
|
||||
| **graph\_storage** | `str` | Storage type for graph edges and nodes. Supported types: `NetworkXStorage`, `Neo4JStorage`, `OracleGraphStorage` | `NetworkXStorage` |
|
||||
| **log\_level** | | Log level for application runtime | `logging.DEBUG` |
|
||||
| **chunk\_token\_size** | `int` | Maximum token size per chunk when splitting documents | `1200` |
|
||||
| **chunk\_overlap\_token\_size** | `int` | Overlap token size between two chunks when splitting documents | `100` |
|
||||
| **tiktoken\_model\_name** | `str` | Model name for the Tiktoken encoder used to calculate token numbers | `gpt-4o-mini` |
|
||||
@@ -881,7 +915,6 @@ Valid modes are:
|
||||
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese", "entity_types": ["organization", "person", "geo", "event"], "insert_batch_size": 10}`: sets example limit, output language, and batch size for document processing | `example_number: all examples, language: English, insert_batch_size: 10` |
|
||||
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
|
||||
| **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:<br>- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.<br>- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.<br>- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` |
|
||||
|**log\_dir** | `str` | Directory to store logs. | `./` |
|
||||
|
||||
</details>
|
||||
|
||||
|
@@ -5,6 +5,7 @@
|
||||
# PORT=9621
|
||||
# WORKERS=1
|
||||
# NAMESPACE_PREFIX=lightrag # separating data from difference Lightrag instances
|
||||
# MAX_GRAPH_NODES=1000 # Max nodes return from grap retrieval
|
||||
# CORS_ORIGINS=http://localhost:3000,http://localhost:8080
|
||||
|
||||
### Optional SSL Configuration
|
||||
|
@@ -81,6 +81,8 @@ asyncio.run(test_funcs())
|
||||
|
||||
embedding_dimension = 3072
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
@@ -91,8 +93,14 @@ rag = LightRAG(
|
||||
),
|
||||
)
|
||||
|
||||
rag.initialize_storages()
|
||||
initialize_pipeline_status()
|
||||
await rag.initialize_storages()
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
|
||||
|
||||
def main():
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
@@ -112,3 +120,7 @@ print(rag.query(query_text, param=QueryParam(mode="global")))
|
||||
|
||||
print("\nResult (Hybrid):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="hybrid")))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -53,3 +53,7 @@ def main():
|
||||
"What are the top themes in this story?", param=QueryParam(mode=mode)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -125,7 +125,7 @@ async def initialize_rag():
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
# reading file
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
|
@@ -77,7 +77,7 @@ async def initialize_rag():
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
@@ -81,7 +81,7 @@ async def initialize_rag():
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
await rag.ainsert(f.read())
|
||||
|
@@ -107,7 +107,7 @@ async def initialize_rag():
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
|
||||
|
@@ -87,7 +87,7 @@ async def initialize_rag():
|
||||
async def main():
|
||||
try:
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
@@ -59,7 +59,7 @@ async def initialize_rag():
|
||||
|
||||
async def main():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
||||
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
||||
|
@@ -102,7 +102,7 @@ async def initialize_rag():
|
||||
# Example function demonstrating the new query_with_separate_keyword_extraction usage
|
||||
async def run_example():
|
||||
# Initialize RAG instance
|
||||
rag = asyncio.run(initialize_rag())
|
||||
rag = await initialize_rag()
|
||||
|
||||
book1 = open("./book_1.txt", encoding="utf-8")
|
||||
book2 = open("./book_2.txt", encoding="utf-8")
|
||||
|
@@ -2,12 +2,15 @@
|
||||
import os
|
||||
import logging
|
||||
from lightrag.kg.shared_storage import finalize_share_data
|
||||
from lightrag.api.lightrag_server import LightragPathFilter
|
||||
from lightrag.utils import setup_logger
|
||||
|
||||
# Get log directory path from environment variable
|
||||
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
||||
|
||||
# Ensure log directory exists
|
||||
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
|
||||
|
||||
# Get log file max size and backup count from environment variables
|
||||
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||
@@ -108,6 +111,9 @@ def on_starting(server):
|
||||
except ImportError:
|
||||
print("psutil not installed, skipping memory usage reporting")
|
||||
|
||||
# Log the location of the LightRAG log file
|
||||
print(f"LightRAG log file: {log_file_path}\n")
|
||||
|
||||
print("Gunicorn initialization complete, forking workers...\n")
|
||||
|
||||
|
||||
@@ -134,51 +140,18 @@ def post_fork(server, worker):
|
||||
Executed after a worker has been forked.
|
||||
This is a good place to set up worker-specific configurations.
|
||||
"""
|
||||
# Configure formatters
|
||||
detailed_formatter = logging.Formatter(
|
||||
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||
)
|
||||
simple_formatter = logging.Formatter("%(levelname)s: %(message)s")
|
||||
|
||||
def setup_logger(logger_name: str, level: str = "INFO", add_filter: bool = False):
|
||||
"""Set up a logger with console and file handlers"""
|
||||
logger_instance = logging.getLogger(logger_name)
|
||||
logger_instance.setLevel(level)
|
||||
logger_instance.handlers = [] # Clear existing handlers
|
||||
logger_instance.propagate = False
|
||||
|
||||
# Add console handler
|
||||
console_handler = logging.StreamHandler()
|
||||
console_handler.setFormatter(simple_formatter)
|
||||
console_handler.setLevel(level)
|
||||
logger_instance.addHandler(console_handler)
|
||||
|
||||
# Add file handler
|
||||
file_handler = logging.handlers.RotatingFileHandler(
|
||||
filename=log_file_path,
|
||||
maxBytes=log_max_bytes,
|
||||
backupCount=log_backup_count,
|
||||
encoding="utf-8",
|
||||
)
|
||||
file_handler.setFormatter(detailed_formatter)
|
||||
file_handler.setLevel(level)
|
||||
logger_instance.addHandler(file_handler)
|
||||
|
||||
# Add path filter if requested
|
||||
if add_filter:
|
||||
path_filter = LightragPathFilter()
|
||||
logger_instance.addFilter(path_filter)
|
||||
|
||||
# Set up main loggers
|
||||
log_level = loglevel.upper() if loglevel else "INFO"
|
||||
setup_logger("uvicorn", log_level)
|
||||
setup_logger("uvicorn.access", log_level, add_filter=True)
|
||||
setup_logger("lightrag", log_level, add_filter=True)
|
||||
setup_logger("uvicorn", log_level, add_filter=False, log_file_path=log_file_path)
|
||||
setup_logger(
|
||||
"uvicorn.access", log_level, add_filter=True, log_file_path=log_file_path
|
||||
)
|
||||
setup_logger("lightrag", log_level, add_filter=True, log_file_path=log_file_path)
|
||||
|
||||
# Set up lightrag submodule loggers
|
||||
for name in logging.root.manager.loggerDict:
|
||||
if name.startswith("lightrag."):
|
||||
setup_logger(name, log_level, add_filter=True)
|
||||
setup_logger(name, log_level, add_filter=True, log_file_path=log_file_path)
|
||||
|
||||
# Disable uvicorn.error logger
|
||||
uvicorn_error_logger = logging.getLogger("uvicorn.error")
|
||||
|
@@ -6,7 +6,6 @@ from fastapi import (
|
||||
FastAPI,
|
||||
Depends,
|
||||
)
|
||||
from fastapi.responses import FileResponse
|
||||
import asyncio
|
||||
import os
|
||||
import logging
|
||||
@@ -331,7 +330,6 @@ def create_app(args):
|
||||
"similarity_threshold": 0.95,
|
||||
"use_llm_check": False,
|
||||
},
|
||||
log_level=args.log_level,
|
||||
namespace_prefix=args.namespace_prefix,
|
||||
auto_manage_storages_states=False,
|
||||
)
|
||||
@@ -361,7 +359,6 @@ def create_app(args):
|
||||
"similarity_threshold": 0.95,
|
||||
"use_llm_check": False,
|
||||
},
|
||||
log_level=args.log_level,
|
||||
namespace_prefix=args.namespace_prefix,
|
||||
auto_manage_storages_states=False,
|
||||
)
|
||||
@@ -412,10 +409,6 @@ def create_app(args):
|
||||
name="webui",
|
||||
)
|
||||
|
||||
@app.get("/webui/")
|
||||
async def webui_root():
|
||||
return FileResponse(static_dir / "index.html")
|
||||
|
||||
return app
|
||||
|
||||
|
||||
@@ -439,6 +432,9 @@ def configure_logging():
|
||||
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
||||
|
||||
print(f"\nLightRAG log file: {log_file_path}\n")
|
||||
os.makedirs(os.path.dirname(log_dir), exist_ok=True)
|
||||
|
||||
# Get log file max size and backup count from environment variables
|
||||
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||
|
@@ -215,9 +215,29 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
| ".scss"
|
||||
| ".less"
|
||||
):
|
||||
try:
|
||||
# Try to decode as UTF-8
|
||||
content = file.decode("utf-8")
|
||||
|
||||
# Validate content
|
||||
if not content or len(content.strip()) == 0:
|
||||
logger.error(f"Empty content in file: {file_path.name}")
|
||||
return False
|
||||
|
||||
# Check if content looks like binary data string representation
|
||||
if content.startswith("b'") or content.startswith('b"'):
|
||||
logger.error(
|
||||
f"File {file_path.name} appears to contain binary data representation instead of text"
|
||||
)
|
||||
return False
|
||||
|
||||
except UnicodeDecodeError:
|
||||
logger.error(
|
||||
f"File {file_path.name} is not valid UTF-8 encoded text. Please convert it to UTF-8 before processing."
|
||||
)
|
||||
return False
|
||||
case ".pdf":
|
||||
if not pm.is_installed("pypdf2"):
|
||||
if not pm.is_installed("pypdf2"): # type: ignore
|
||||
pm.install("pypdf2")
|
||||
from PyPDF2 import PdfReader # type: ignore
|
||||
from io import BytesIO
|
||||
@@ -227,18 +247,18 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
for page in reader.pages:
|
||||
content += page.extract_text() + "\n"
|
||||
case ".docx":
|
||||
if not pm.is_installed("docx"):
|
||||
if not pm.is_installed("python-docx"): # type: ignore
|
||||
pm.install("docx")
|
||||
from docx import Document
|
||||
from docx import Document # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
docx_file = BytesIO(file)
|
||||
doc = Document(docx_file)
|
||||
content = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
||||
case ".pptx":
|
||||
if not pm.is_installed("pptx"):
|
||||
if not pm.is_installed("python-pptx"): # type: ignore
|
||||
pm.install("pptx")
|
||||
from pptx import Presentation
|
||||
from pptx import Presentation # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
pptx_file = BytesIO(file)
|
||||
@@ -248,9 +268,9 @@ async def pipeline_enqueue_file(rag: LightRAG, file_path: Path) -> bool:
|
||||
if hasattr(shape, "text"):
|
||||
content += shape.text + "\n"
|
||||
case ".xlsx":
|
||||
if not pm.is_installed("openpyxl"):
|
||||
if not pm.is_installed("openpyxl"): # type: ignore
|
||||
pm.install("openpyxl")
|
||||
from openpyxl import load_workbook
|
||||
from openpyxl import load_workbook # type: ignore
|
||||
from io import BytesIO
|
||||
|
||||
xlsx_file = BytesIO(file)
|
||||
|
@@ -16,12 +16,32 @@ def create_graph_routes(rag, api_key: Optional[str] = None):
|
||||
|
||||
@router.get("/graph/label/list", dependencies=[Depends(optional_api_key)])
|
||||
async def get_graph_labels():
|
||||
"""Get all graph labels"""
|
||||
"""
|
||||
Get all graph labels
|
||||
|
||||
Returns:
|
||||
List[str]: List of graph labels
|
||||
"""
|
||||
return await rag.get_graph_labels()
|
||||
|
||||
@router.get("/graphs", dependencies=[Depends(optional_api_key)])
|
||||
async def get_knowledge_graph(label: str, max_depth: int = 3):
|
||||
"""Get knowledge graph for a specific label"""
|
||||
"""
|
||||
Retrieve a connected subgraph of nodes where the label includes the specified label.
|
||||
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
|
||||
When reducing the number of nodes, the prioritization criteria are as follows:
|
||||
1. Label matching nodes take precedence
|
||||
2. Followed by nodes directly connected to the matching nodes
|
||||
3. Finally, the degree of the nodes
|
||||
Maximum number of nodes is limited to env MAX_GRAPH_NODES(default: 1000)
|
||||
|
||||
Args:
|
||||
label (str): Label to get knowledge graph for
|
||||
max_depth (int, optional): Maximum depth of graph. Defaults to 3.
|
||||
|
||||
Returns:
|
||||
Dict[str, List[str]]: Knowledge graph for label
|
||||
"""
|
||||
return await rag.get_knowledge_graph(node_label=label, max_depth=max_depth)
|
||||
|
||||
return router
|
||||
|
@@ -44,6 +44,15 @@ class JsonKVStorage(BaseKVStorage):
|
||||
)
|
||||
write_json(data_dict, self._file_name)
|
||||
|
||||
async def get_all(self) -> dict[str, Any]:
|
||||
"""Get all data from storage
|
||||
|
||||
Returns:
|
||||
Dictionary containing all stored data
|
||||
"""
|
||||
async with self._storage_lock:
|
||||
return dict(self._data)
|
||||
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
async with self._storage_lock:
|
||||
return self._data.get(id)
|
||||
|
@@ -23,7 +23,7 @@ import pipmaster as pm
|
||||
if not pm.is_installed("neo4j"):
|
||||
pm.install("neo4j")
|
||||
|
||||
from neo4j import (
|
||||
from neo4j import ( # type: ignore
|
||||
AsyncGraphDatabase,
|
||||
exceptions as neo4jExceptions,
|
||||
AsyncDriver,
|
||||
@@ -34,6 +34,9 @@ from neo4j import (
|
||||
config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
|
||||
# Get maximum number of graph nodes from environment variable, default is 1000
|
||||
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||
|
||||
|
||||
@final
|
||||
@dataclass
|
||||
@@ -470,40 +473,61 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
"""
|
||||
Get complete connected subgraph for specified node (including the starting node itself)
|
||||
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
|
||||
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
|
||||
When reducing the number of nodes, the prioritization criteria are as follows:
|
||||
1. Label matching nodes take precedence (nodes containing the specified label string)
|
||||
2. Followed by nodes directly connected to the matching nodes
|
||||
3. Finally, the degree of the nodes
|
||||
|
||||
Key fixes:
|
||||
1. Include the starting node itself
|
||||
2. Handle multi-label nodes
|
||||
3. Clarify relationship directions
|
||||
4. Add depth control
|
||||
Args:
|
||||
node_label (str): String to match in node labels (will match any node containing this string in its label)
|
||||
max_depth (int, optional): Maximum depth of the graph. Defaults to 5.
|
||||
Returns:
|
||||
KnowledgeGraph: Complete connected subgraph for specified node
|
||||
"""
|
||||
label = node_label.strip('"')
|
||||
# Escape single quotes to prevent injection attacks
|
||||
escaped_label = label.replace("'", "\\'")
|
||||
result = KnowledgeGraph()
|
||||
seen_nodes = set()
|
||||
seen_edges = set()
|
||||
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
try:
|
||||
main_query = ""
|
||||
if label == "*":
|
||||
main_query = """
|
||||
MATCH (n)
|
||||
WITH collect(DISTINCT n) AS nodes
|
||||
MATCH ()-[r]-()
|
||||
RETURN nodes, collect(DISTINCT r) AS relationships;
|
||||
OPTIONAL MATCH (n)-[r]-()
|
||||
WITH n, count(r) AS degree
|
||||
ORDER BY degree DESC
|
||||
LIMIT $max_nodes
|
||||
WITH collect(n) AS nodes
|
||||
MATCH (a)-[r]->(b)
|
||||
WHERE a IN nodes AND b IN nodes
|
||||
RETURN nodes, collect(DISTINCT r) AS relationships
|
||||
"""
|
||||
result_set = await session.run(
|
||||
main_query, {"max_nodes": MAX_GRAPH_NODES}
|
||||
)
|
||||
|
||||
else:
|
||||
# Critical debug step: first verify if starting node exists
|
||||
validate_query = f"MATCH (n:`{label}`) RETURN n LIMIT 1"
|
||||
validate_query = f"""
|
||||
MATCH (n)
|
||||
WHERE any(label IN labels(n) WHERE label CONTAINS '{escaped_label}')
|
||||
RETURN n LIMIT 1
|
||||
"""
|
||||
validate_result = await session.run(validate_query)
|
||||
if not await validate_result.single():
|
||||
logger.warning(f"Starting node {label} does not exist!")
|
||||
logger.warning(
|
||||
f"No nodes containing '{label}' in their labels found!"
|
||||
)
|
||||
return result
|
||||
|
||||
# Optimized query (including direction handling and self-loops)
|
||||
# Main query uses partial matching
|
||||
main_query = f"""
|
||||
MATCH (start:`{label}`)
|
||||
MATCH (start)
|
||||
WHERE any(label IN labels(start) WHERE label CONTAINS '{escaped_label}')
|
||||
WITH start
|
||||
CALL apoc.path.subgraphAll(start, {{
|
||||
relationshipFilter: '>',
|
||||
@@ -512,9 +536,25 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
bfs: true
|
||||
}})
|
||||
YIELD nodes, relationships
|
||||
RETURN nodes, relationships
|
||||
WITH start, nodes, relationships
|
||||
UNWIND nodes AS node
|
||||
OPTIONAL MATCH (node)-[r]-()
|
||||
WITH node, count(r) AS degree, start, nodes, relationships,
|
||||
CASE
|
||||
WHEN id(node) = id(start) THEN 2
|
||||
WHEN EXISTS((start)-->(node)) OR EXISTS((node)-->(start)) THEN 1
|
||||
ELSE 0
|
||||
END AS priority
|
||||
ORDER BY priority DESC, degree DESC
|
||||
LIMIT $max_nodes
|
||||
WITH collect(node) AS filtered_nodes, nodes, relationships
|
||||
RETURN filtered_nodes AS nodes,
|
||||
[rel IN relationships WHERE startNode(rel) IN filtered_nodes AND endNode(rel) IN filtered_nodes] AS relationships
|
||||
"""
|
||||
result_set = await session.run(main_query)
|
||||
result_set = await session.run(
|
||||
main_query, {"max_nodes": MAX_GRAPH_NODES}
|
||||
)
|
||||
|
||||
record = await result_set.single()
|
||||
|
||||
if record:
|
||||
@@ -650,8 +690,98 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
labels.append(record["label"])
|
||||
return labels
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(
|
||||
neo4jExceptions.ServiceUnavailable,
|
||||
neo4jExceptions.TransientError,
|
||||
neo4jExceptions.WriteServiceUnavailable,
|
||||
neo4jExceptions.ClientError,
|
||||
)
|
||||
),
|
||||
)
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
"""Delete a node with the specified label
|
||||
|
||||
Args:
|
||||
node_id: The label of the node to delete
|
||||
"""
|
||||
label = await self._ensure_label(node_id)
|
||||
|
||||
async def _do_delete(tx: AsyncManagedTransaction):
|
||||
query = f"""
|
||||
MATCH (n:`{label}`)
|
||||
DETACH DELETE n
|
||||
"""
|
||||
await tx.run(query)
|
||||
logger.debug(f"Deleted node with label '{label}'")
|
||||
|
||||
try:
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
await session.execute_write(_do_delete)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during node deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(
|
||||
neo4jExceptions.ServiceUnavailable,
|
||||
neo4jExceptions.TransientError,
|
||||
neo4jExceptions.WriteServiceUnavailable,
|
||||
neo4jExceptions.ClientError,
|
||||
)
|
||||
),
|
||||
)
|
||||
async def remove_nodes(self, nodes: list[str]):
|
||||
"""Delete multiple nodes
|
||||
|
||||
Args:
|
||||
nodes: List of node labels to be deleted
|
||||
"""
|
||||
for node in nodes:
|
||||
await self.delete_node(node)
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type(
|
||||
(
|
||||
neo4jExceptions.ServiceUnavailable,
|
||||
neo4jExceptions.TransientError,
|
||||
neo4jExceptions.WriteServiceUnavailable,
|
||||
neo4jExceptions.ClientError,
|
||||
)
|
||||
),
|
||||
)
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]):
|
||||
"""Delete multiple edges
|
||||
|
||||
Args:
|
||||
edges: List of edges to be deleted, each edge is a (source, target) tuple
|
||||
"""
|
||||
for source, target in edges:
|
||||
source_label = await self._ensure_label(source)
|
||||
target_label = await self._ensure_label(target)
|
||||
|
||||
async def _do_delete_edge(tx: AsyncManagedTransaction):
|
||||
query = f"""
|
||||
MATCH (source:`{source_label}`)-[r]->(target:`{target_label}`)
|
||||
DELETE r
|
||||
"""
|
||||
await tx.run(query)
|
||||
logger.debug(f"Deleted edge from '{source_label}' to '{target_label}'")
|
||||
|
||||
try:
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
await session.execute_write(_do_delete_edge)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during edge deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
|
@@ -24,6 +24,8 @@ from .shared_storage import (
|
||||
is_multiprocess,
|
||||
)
|
||||
|
||||
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||
|
||||
|
||||
@final
|
||||
@dataclass
|
||||
@@ -233,7 +235,12 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
"""
|
||||
Get complete connected subgraph for specified node (including the starting node itself)
|
||||
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
|
||||
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
|
||||
When reducing the number of nodes, the prioritization criteria are as follows:
|
||||
1. Label matching nodes take precedence
|
||||
2. Followed by nodes directly connected to the matching nodes
|
||||
3. Finally, the degree of the nodes
|
||||
|
||||
Args:
|
||||
node_label: Label of the starting node
|
||||
@@ -265,22 +272,51 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
logger.warning(f"No nodes found with label {node_label}")
|
||||
return result
|
||||
|
||||
# Get subgraph using ego_graph
|
||||
subgraph = nx.ego_graph(graph, nodes_to_explore[0], radius=max_depth)
|
||||
# Get subgraph using ego_graph from all matching nodes
|
||||
combined_subgraph = nx.Graph()
|
||||
for start_node in nodes_to_explore:
|
||||
node_subgraph = nx.ego_graph(graph, start_node, radius=max_depth)
|
||||
combined_subgraph = nx.compose(combined_subgraph, node_subgraph)
|
||||
subgraph = combined_subgraph
|
||||
|
||||
# Check if number of nodes exceeds max_graph_nodes
|
||||
max_graph_nodes = 500
|
||||
if len(subgraph.nodes()) > max_graph_nodes:
|
||||
if len(subgraph.nodes()) > MAX_GRAPH_NODES:
|
||||
origin_nodes = len(subgraph.nodes())
|
||||
|
||||
node_degrees = dict(subgraph.degree())
|
||||
top_nodes = sorted(node_degrees.items(), key=lambda x: x[1], reverse=True)[
|
||||
:max_graph_nodes
|
||||
|
||||
start_nodes = set()
|
||||
direct_connected_nodes = set()
|
||||
|
||||
if node_label != "*" and nodes_to_explore:
|
||||
start_nodes = set(nodes_to_explore)
|
||||
# Get nodes directly connected to all start nodes
|
||||
for start_node in start_nodes:
|
||||
direct_connected_nodes.update(subgraph.neighbors(start_node))
|
||||
|
||||
# Remove start nodes from directly connected nodes (avoid duplicates)
|
||||
direct_connected_nodes -= start_nodes
|
||||
|
||||
def priority_key(node_item):
|
||||
node, degree = node_item
|
||||
# Priority order: start(2) > directly connected(1) > other nodes(0)
|
||||
if node in start_nodes:
|
||||
priority = 2
|
||||
elif node in direct_connected_nodes:
|
||||
priority = 1
|
||||
else:
|
||||
priority = 0
|
||||
return (priority, degree)
|
||||
|
||||
# Sort by priority and degree and select top MAX_GRAPH_NODES nodes
|
||||
top_nodes = sorted(node_degrees.items(), key=priority_key, reverse=True)[
|
||||
:MAX_GRAPH_NODES
|
||||
]
|
||||
top_node_ids = [node[0] for node in top_nodes]
|
||||
# Create new subgraph with only top nodes
|
||||
# Create new subgraph and keep nodes only with most degree
|
||||
subgraph = subgraph.subgraph(top_node_ids)
|
||||
logger.info(
|
||||
f"Reduced graph from {origin_nodes} nodes to {max_graph_nodes} nodes (depth={max_depth})"
|
||||
f"Reduced graph from {origin_nodes} nodes to {MAX_GRAPH_NODES} nodes (depth={max_depth})"
|
||||
)
|
||||
|
||||
# Add nodes to result
|
||||
@@ -320,7 +356,7 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=edge_id,
|
||||
type="DIRECTED",
|
||||
type="RELATED",
|
||||
source=str(source),
|
||||
target=str(target),
|
||||
properties=edge_data,
|
||||
|
@@ -174,6 +174,14 @@ class TiDBKVStorage(BaseKVStorage):
|
||||
self.db = None
|
||||
|
||||
################ QUERY METHODS ################
|
||||
async def get_all(self) -> dict[str, Any]:
|
||||
"""Get all data from storage
|
||||
|
||||
Returns:
|
||||
Dictionary containing all stored data
|
||||
"""
|
||||
async with self._storage_lock:
|
||||
return dict(self._data)
|
||||
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
"""Fetch doc_full data by id."""
|
||||
|
@@ -3,6 +3,7 @@ from __future__ import annotations
|
||||
import asyncio
|
||||
import configparser
|
||||
import os
|
||||
import warnings
|
||||
from dataclasses import asdict, dataclass, field
|
||||
from datetime import datetime
|
||||
from functools import partial
|
||||
@@ -85,14 +86,10 @@ class LightRAG:
|
||||
doc_status_storage: str = field(default="JsonDocStatusStorage")
|
||||
"""Storage type for tracking document processing statuses."""
|
||||
|
||||
# Logging
|
||||
# Logging (Deprecated, use setup_logger in utils.py instead)
|
||||
# ---
|
||||
|
||||
log_level: int = field(default=logger.level)
|
||||
"""Logging level for the system (e.g., 'DEBUG', 'INFO', 'WARNING')."""
|
||||
|
||||
log_file_path: str = field(default=os.path.join(os.getcwd(), "lightrag.log"))
|
||||
"""Log file path."""
|
||||
log_level: int | None = field(default=None)
|
||||
log_file_path: str | None = field(default=None)
|
||||
|
||||
# Entity extraction
|
||||
# ---
|
||||
@@ -266,13 +263,30 @@ class LightRAG:
|
||||
_storages_status: StoragesStatus = field(default=StoragesStatus.NOT_CREATED)
|
||||
|
||||
def __post_init__(self):
|
||||
os.makedirs(os.path.dirname(self.log_file_path), exist_ok=True)
|
||||
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
||||
|
||||
from lightrag.kg.shared_storage import (
|
||||
initialize_share_data,
|
||||
)
|
||||
|
||||
# Handle deprecated parameters
|
||||
if self.log_level is not None:
|
||||
warnings.warn(
|
||||
"WARNING: log_level parameter is deprecated, use setup_logger in utils.py instead",
|
||||
UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
if self.log_file_path is not None:
|
||||
warnings.warn(
|
||||
"WARNING: log_file_path parameter is deprecated, use setup_logger in utils.py instead",
|
||||
UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
# Remove these attributes to prevent their use
|
||||
if hasattr(self, "log_level"):
|
||||
delattr(self, "log_level")
|
||||
if hasattr(self, "log_file_path"):
|
||||
delattr(self, "log_file_path")
|
||||
|
||||
initialize_share_data()
|
||||
|
||||
if not os.path.exists(self.working_dir):
|
||||
@@ -671,8 +685,24 @@ class LightRAG:
|
||||
all_new_doc_ids = set(new_docs.keys())
|
||||
# Exclude IDs of documents that are already in progress
|
||||
unique_new_doc_ids = await self.doc_status.filter_keys(all_new_doc_ids)
|
||||
|
||||
# Log ignored document IDs
|
||||
ignored_ids = [
|
||||
doc_id for doc_id in unique_new_doc_ids if doc_id not in new_docs
|
||||
]
|
||||
if ignored_ids:
|
||||
logger.warning(
|
||||
f"Ignoring {len(ignored_ids)} document IDs not found in new_docs"
|
||||
)
|
||||
for doc_id in ignored_ids:
|
||||
logger.warning(f"Ignored document ID: {doc_id}")
|
||||
|
||||
# Filter new_docs to only include documents with unique IDs
|
||||
new_docs = {doc_id: new_docs[doc_id] for doc_id in unique_new_doc_ids}
|
||||
new_docs = {
|
||||
doc_id: new_docs[doc_id]
|
||||
for doc_id in unique_new_doc_ids
|
||||
if doc_id in new_docs
|
||||
}
|
||||
|
||||
if not new_docs:
|
||||
logger.info("No new unique documents were found.")
|
||||
@@ -1159,7 +1189,7 @@ class LightRAG:
|
||||
"""
|
||||
if param.mode in ["local", "global", "hybrid"]:
|
||||
response = await kg_query(
|
||||
query,
|
||||
query.strip(),
|
||||
self.chunk_entity_relation_graph,
|
||||
self.entities_vdb,
|
||||
self.relationships_vdb,
|
||||
@@ -1180,7 +1210,7 @@ class LightRAG:
|
||||
)
|
||||
elif param.mode == "naive":
|
||||
response = await naive_query(
|
||||
query,
|
||||
query.strip(),
|
||||
self.chunks_vdb,
|
||||
self.text_chunks,
|
||||
param,
|
||||
@@ -1199,7 +1229,7 @@ class LightRAG:
|
||||
)
|
||||
elif param.mode == "mix":
|
||||
response = await mix_kg_vector_query(
|
||||
query,
|
||||
query.strip(),
|
||||
self.chunk_entity_relation_graph,
|
||||
self.entities_vdb,
|
||||
self.relationships_vdb,
|
||||
@@ -1417,14 +1447,22 @@ class LightRAG:
|
||||
|
||||
logger.debug(f"Starting deletion for document {doc_id}")
|
||||
|
||||
doc_to_chunk_id = doc_id.replace("doc", "chunk")
|
||||
# 2. Get all chunks related to this document
|
||||
# Find all chunks where full_doc_id equals the current doc_id
|
||||
all_chunks = await self.text_chunks.get_all()
|
||||
related_chunks = {
|
||||
chunk_id: chunk_data
|
||||
for chunk_id, chunk_data in all_chunks.items()
|
||||
if isinstance(chunk_data, dict)
|
||||
and chunk_data.get("full_doc_id") == doc_id
|
||||
}
|
||||
|
||||
# 2. Get all related chunks
|
||||
chunks = await self.text_chunks.get_by_id(doc_to_chunk_id)
|
||||
if not chunks:
|
||||
if not related_chunks:
|
||||
logger.warning(f"No chunks found for document {doc_id}")
|
||||
return
|
||||
|
||||
chunk_ids = {chunks["full_doc_id"].replace("doc", "chunk")}
|
||||
# Get all related chunk IDs
|
||||
chunk_ids = set(related_chunks.keys())
|
||||
logger.debug(f"Found {len(chunk_ids)} chunks to delete")
|
||||
|
||||
# 3. Before deleting, check the related entities and relationships for these chunks
|
||||
@@ -1612,9 +1650,18 @@ class LightRAG:
|
||||
logger.warning(f"Document {doc_id} still exists in full_docs")
|
||||
|
||||
# Verify if chunks have been deleted
|
||||
remaining_chunks = await self.text_chunks.get_by_id(doc_to_chunk_id)
|
||||
if remaining_chunks:
|
||||
logger.warning(f"Found {len(remaining_chunks)} remaining chunks")
|
||||
all_remaining_chunks = await self.text_chunks.get_all()
|
||||
remaining_related_chunks = {
|
||||
chunk_id: chunk_data
|
||||
for chunk_id, chunk_data in all_remaining_chunks.items()
|
||||
if isinstance(chunk_data, dict)
|
||||
and chunk_data.get("full_doc_id") == doc_id
|
||||
}
|
||||
|
||||
if remaining_related_chunks:
|
||||
logger.warning(
|
||||
f"Found {len(remaining_related_chunks)} remaining chunks"
|
||||
)
|
||||
|
||||
# Verify entities and relationships
|
||||
for chunk_id in chunk_ids:
|
||||
|
@@ -6,6 +6,7 @@ import io
|
||||
import csv
|
||||
import json
|
||||
import logging
|
||||
import logging.handlers
|
||||
import os
|
||||
import re
|
||||
from dataclasses import dataclass
|
||||
@@ -68,6 +69,101 @@ logger.setLevel(logging.INFO)
|
||||
logging.getLogger("httpx").setLevel(logging.WARNING)
|
||||
|
||||
|
||||
class LightragPathFilter(logging.Filter):
|
||||
"""Filter for lightrag logger to filter out frequent path access logs"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# Define paths to be filtered
|
||||
self.filtered_paths = ["/documents", "/health", "/webui/"]
|
||||
|
||||
def filter(self, record):
|
||||
try:
|
||||
# Check if record has the required attributes for an access log
|
||||
if not hasattr(record, "args") or not isinstance(record.args, tuple):
|
||||
return True
|
||||
if len(record.args) < 5:
|
||||
return True
|
||||
|
||||
# Extract method, path and status from the record args
|
||||
method = record.args[1]
|
||||
path = record.args[2]
|
||||
status = record.args[4]
|
||||
|
||||
# Filter out successful GET requests to filtered paths
|
||||
if (
|
||||
method == "GET"
|
||||
and (status == 200 or status == 304)
|
||||
and path in self.filtered_paths
|
||||
):
|
||||
return False
|
||||
|
||||
return True
|
||||
except Exception:
|
||||
# In case of any error, let the message through
|
||||
return True
|
||||
|
||||
|
||||
def setup_logger(
|
||||
logger_name: str,
|
||||
level: str = "INFO",
|
||||
add_filter: bool = False,
|
||||
log_file_path: str = None,
|
||||
):
|
||||
"""Set up a logger with console and file handlers
|
||||
|
||||
Args:
|
||||
logger_name: Name of the logger to set up
|
||||
level: Log level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
|
||||
add_filter: Whether to add LightragPathFilter to the logger
|
||||
log_file_path: Path to the log file. If None, will use current directory/lightrag.log
|
||||
"""
|
||||
# Configure formatters
|
||||
detailed_formatter = logging.Formatter(
|
||||
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
||||
)
|
||||
simple_formatter = logging.Formatter("%(levelname)s: %(message)s")
|
||||
|
||||
# Get log file path
|
||||
if log_file_path is None:
|
||||
log_dir = os.getenv("LOG_DIR", os.getcwd())
|
||||
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag.log"))
|
||||
|
||||
# Ensure log directory exists
|
||||
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
|
||||
|
||||
# Get log file max size and backup count from environment variables
|
||||
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
|
||||
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
|
||||
|
||||
logger_instance = logging.getLogger(logger_name)
|
||||
logger_instance.setLevel(level)
|
||||
logger_instance.handlers = [] # Clear existing handlers
|
||||
logger_instance.propagate = False
|
||||
|
||||
# Add console handler
|
||||
console_handler = logging.StreamHandler()
|
||||
console_handler.setFormatter(simple_formatter)
|
||||
console_handler.setLevel(level)
|
||||
logger_instance.addHandler(console_handler)
|
||||
|
||||
# Add file handler
|
||||
file_handler = logging.handlers.RotatingFileHandler(
|
||||
filename=log_file_path,
|
||||
maxBytes=log_max_bytes,
|
||||
backupCount=log_backup_count,
|
||||
encoding="utf-8",
|
||||
)
|
||||
file_handler.setFormatter(detailed_formatter)
|
||||
file_handler.setLevel(level)
|
||||
logger_instance.addHandler(file_handler)
|
||||
|
||||
# Add path filter if requested
|
||||
if add_filter:
|
||||
path_filter = LightragPathFilter()
|
||||
logger_instance.addFilter(path_filter)
|
||||
|
||||
|
||||
class UnlimitedSemaphore:
|
||||
"""A context manager that allows unlimited access."""
|
||||
|
||||
|
@@ -3,7 +3,7 @@ configparser
|
||||
future
|
||||
|
||||
# Basic modules
|
||||
numpy
|
||||
gensim
|
||||
pipmaster
|
||||
pydantic
|
||||
python-dotenv
|
||||
|
Reference in New Issue
Block a user