Revert "Refactor embedding functions and add async query limit"
This reverts commit 21481dba8f
.
This commit is contained in:
@@ -76,8 +76,6 @@ class NanoVectorDBStorage(BaseVectorStorage):
|
||||
cosine_better_than_threshold: float = float(os.getenv("COSINE_THRESHOLD", "0.2"))
|
||||
|
||||
def __post_init__(self):
|
||||
# Initialize lock only for file operations
|
||||
self._save_lock = asyncio.Lock()
|
||||
# Use global config value if specified, otherwise use default
|
||||
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
||||
self.cosine_better_than_threshold = config.get(
|
||||
@@ -212,6 +210,4 @@ class NanoVectorDBStorage(BaseVectorStorage):
|
||||
logger.error(f"Error deleting relations for {entity_name}: {e}")
|
||||
|
||||
async def index_done_callback(self):
|
||||
# Protect file write operation
|
||||
async with self._save_lock:
|
||||
self._client.save()
|
||||
|
@@ -154,7 +154,6 @@ class LightRAG:
|
||||
embedding_func: EmbeddingFunc = None # This must be set (we do want to separate llm from the corte, so no more default initialization)
|
||||
embedding_batch_num: int = 32
|
||||
embedding_func_max_async: int = 16
|
||||
embedding_func_max_async_query: int = 4
|
||||
|
||||
# LLM
|
||||
llm_model_func: callable = None # This must be set (we do want to separate llm from the corte, so no more default initialization)
|
||||
@@ -196,13 +195,10 @@ class LightRAG:
|
||||
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
||||
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
||||
|
||||
# Init embedding functions with separate instances for insert and query
|
||||
self.insert_embedding_func = limit_async_func_call(
|
||||
self.embedding_func_max_async
|
||||
)(self.embedding_func)
|
||||
self.query_embedding_func = limit_async_func_call(
|
||||
self.embedding_func_max_async_query
|
||||
)(self.embedding_func)
|
||||
# Init LLM
|
||||
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
||||
self.embedding_func
|
||||
)
|
||||
|
||||
# Initialize all storages
|
||||
self.key_string_value_json_storage_cls: Type[BaseKVStorage] = (
|
||||
@@ -242,15 +238,15 @@ class LightRAG:
|
||||
####
|
||||
self.full_docs = self.key_string_value_json_storage_cls(
|
||||
namespace="full_docs",
|
||||
embedding_func=self.insert_embedding_func,
|
||||
embedding_func=self.embedding_func,
|
||||
)
|
||||
self.text_chunks = self.key_string_value_json_storage_cls(
|
||||
namespace="text_chunks",
|
||||
embedding_func=self.insert_embedding_func,
|
||||
embedding_func=self.embedding_func,
|
||||
)
|
||||
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
||||
namespace="chunk_entity_relation",
|
||||
embedding_func=self.insert_embedding_func,
|
||||
embedding_func=self.embedding_func,
|
||||
)
|
||||
####
|
||||
# add embedding func by walter over
|
||||
@@ -258,17 +254,17 @@ class LightRAG:
|
||||
|
||||
self.entities_vdb = self.vector_db_storage_cls(
|
||||
namespace="entities",
|
||||
embedding_func=self.query_embedding_func,
|
||||
embedding_func=self.embedding_func,
|
||||
meta_fields={"entity_name"},
|
||||
)
|
||||
self.relationships_vdb = self.vector_db_storage_cls(
|
||||
namespace="relationships",
|
||||
embedding_func=self.query_embedding_func,
|
||||
embedding_func=self.embedding_func,
|
||||
meta_fields={"src_id", "tgt_id"},
|
||||
)
|
||||
self.chunks_vdb = self.vector_db_storage_cls(
|
||||
namespace="chunks",
|
||||
embedding_func=self.query_embedding_func,
|
||||
embedding_func=self.embedding_func,
|
||||
)
|
||||
|
||||
if self.llm_response_cache and hasattr(
|
||||
|
Reference in New Issue
Block a user