Merge pull request #539 from ShanGor/main
Added PostgreSQL implementation
This commit is contained in:
114
examples/lightrag_zhipu_postgres_demo.py
Normal file
114
examples/lightrag_zhipu_postgres_demo.py
Normal file
@@ -0,0 +1,114 @@
|
|||||||
|
import asyncio
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
from lightrag import LightRAG, QueryParam
|
||||||
|
from lightrag.kg.postgres_impl import PostgreSQLDB
|
||||||
|
from lightrag.llm import ollama_embedding, zhipu_complete
|
||||||
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
ROOT_DIR = os.environ.get("ROOT_DIR")
|
||||||
|
WORKING_DIR = f"{ROOT_DIR}/dickens-pg"
|
||||||
|
|
||||||
|
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
||||||
|
|
||||||
|
if not os.path.exists(WORKING_DIR):
|
||||||
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
# AGE
|
||||||
|
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
||||||
|
|
||||||
|
postgres_db = PostgreSQLDB(
|
||||||
|
config={
|
||||||
|
"host": "localhost",
|
||||||
|
"port": 15432,
|
||||||
|
"user": "rag",
|
||||||
|
"password": "rag",
|
||||||
|
"database": "rag",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
await postgres_db.initdb()
|
||||||
|
# Check if PostgreSQL DB tables exist, if not, tables will be created
|
||||||
|
await postgres_db.check_tables()
|
||||||
|
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=zhipu_complete,
|
||||||
|
llm_model_name="glm-4-flashx",
|
||||||
|
llm_model_max_async=4,
|
||||||
|
llm_model_max_token_size=32768,
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=768,
|
||||||
|
max_token_size=8192,
|
||||||
|
func=lambda texts: ollama_embedding(
|
||||||
|
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
||||||
|
),
|
||||||
|
),
|
||||||
|
kv_storage="PGKVStorage",
|
||||||
|
doc_status_storage="PGDocStatusStorage",
|
||||||
|
graph_storage="PGGraphStorage",
|
||||||
|
vector_storage="PGVectorStorage",
|
||||||
|
)
|
||||||
|
# Set the KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||||
|
rag.doc_status.db = postgres_db
|
||||||
|
rag.full_docs.db = postgres_db
|
||||||
|
rag.text_chunks.db = postgres_db
|
||||||
|
rag.llm_response_cache.db = postgres_db
|
||||||
|
rag.key_string_value_json_storage_cls.db = postgres_db
|
||||||
|
rag.chunks_vdb.db = postgres_db
|
||||||
|
rag.relationships_vdb.db = postgres_db
|
||||||
|
rag.entities_vdb.db = postgres_db
|
||||||
|
rag.graph_storage_cls.db = postgres_db
|
||||||
|
rag.chunk_entity_relation_graph.db = postgres_db
|
||||||
|
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
||||||
|
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
||||||
|
|
||||||
|
with open(f"{ROOT_DIR}/book.txt", "r", encoding="utf-8") as f:
|
||||||
|
await rag.ainsert(f.read())
|
||||||
|
|
||||||
|
print("==== Trying to test the rag queries ====")
|
||||||
|
print("**** Start Naive Query ****")
|
||||||
|
start_time = time.time()
|
||||||
|
# Perform naive search
|
||||||
|
print(
|
||||||
|
await rag.aquery(
|
||||||
|
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||||
|
)
|
||||||
|
)
|
||||||
|
print(f"Naive Query Time: {time.time() - start_time} seconds")
|
||||||
|
# Perform local search
|
||||||
|
print("**** Start Local Query ****")
|
||||||
|
start_time = time.time()
|
||||||
|
print(
|
||||||
|
await rag.aquery(
|
||||||
|
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||||
|
)
|
||||||
|
)
|
||||||
|
print(f"Local Query Time: {time.time() - start_time} seconds")
|
||||||
|
# Perform global search
|
||||||
|
print("**** Start Global Query ****")
|
||||||
|
start_time = time.time()
|
||||||
|
print(
|
||||||
|
await rag.aquery(
|
||||||
|
"What are the top themes in this story?", param=QueryParam(mode="global")
|
||||||
|
)
|
||||||
|
)
|
||||||
|
print(f"Global Query Time: {time.time() - start_time}")
|
||||||
|
# Perform hybrid search
|
||||||
|
print("**** Start Hybrid Query ****")
|
||||||
|
print(
|
||||||
|
await rag.aquery(
|
||||||
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
||||||
|
)
|
||||||
|
)
|
||||||
|
print(f"Hybrid Query Time: {time.time() - start_time} seconds")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(main())
|
1183
lightrag/kg/postgres_impl.py
Normal file
1183
lightrag/kg/postgres_impl.py
Normal file
File diff suppressed because it is too large
Load Diff
125
lightrag/kg/postgres_impl_test.py
Normal file
125
lightrag/kg/postgres_impl_test.py
Normal file
@@ -0,0 +1,125 @@
|
|||||||
|
import asyncio
|
||||||
|
import asyncpg
|
||||||
|
import sys
|
||||||
|
import os
|
||||||
|
|
||||||
|
import psycopg
|
||||||
|
from psycopg_pool import AsyncConnectionPool
|
||||||
|
from lightrag.kg.postgres_impl import PostgreSQLDB, PGGraphStorage
|
||||||
|
|
||||||
|
DB = "rag"
|
||||||
|
USER = "rag"
|
||||||
|
PASSWORD = "rag"
|
||||||
|
HOST = "localhost"
|
||||||
|
PORT = "15432"
|
||||||
|
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
||||||
|
|
||||||
|
if sys.platform.startswith("win"):
|
||||||
|
import asyncio.windows_events
|
||||||
|
|
||||||
|
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
||||||
|
|
||||||
|
|
||||||
|
async def get_pool():
|
||||||
|
return await asyncpg.create_pool(
|
||||||
|
f"postgres://{USER}:{PASSWORD}@{HOST}:{PORT}/{DB}",
|
||||||
|
min_size=10,
|
||||||
|
max_size=10,
|
||||||
|
max_queries=5000,
|
||||||
|
max_inactive_connection_lifetime=300.0,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def main1():
|
||||||
|
connection_string = (
|
||||||
|
f"dbname='{DB}' user='{USER}' password='{PASSWORD}' host='{HOST}' port={PORT}"
|
||||||
|
)
|
||||||
|
pool = AsyncConnectionPool(connection_string, open=False)
|
||||||
|
await pool.open()
|
||||||
|
|
||||||
|
try:
|
||||||
|
conn = await pool.getconn(timeout=10)
|
||||||
|
async with conn.cursor() as curs:
|
||||||
|
try:
|
||||||
|
await curs.execute('SET search_path = ag_catalog, "$user", public')
|
||||||
|
await curs.execute("SELECT create_graph('dickens-2')")
|
||||||
|
await conn.commit()
|
||||||
|
print("create_graph success")
|
||||||
|
except (
|
||||||
|
psycopg.errors.InvalidSchemaName,
|
||||||
|
psycopg.errors.UniqueViolation,
|
||||||
|
):
|
||||||
|
print("create_graph already exists")
|
||||||
|
await conn.rollback()
|
||||||
|
finally:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
db = PostgreSQLDB(
|
||||||
|
config={
|
||||||
|
"host": "localhost",
|
||||||
|
"port": 15432,
|
||||||
|
"user": "rag",
|
||||||
|
"password": "rag",
|
||||||
|
"database": "rag",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def query_with_age():
|
||||||
|
await db.initdb()
|
||||||
|
graph = PGGraphStorage(
|
||||||
|
namespace="chunk_entity_relation",
|
||||||
|
global_config={},
|
||||||
|
embedding_func=None,
|
||||||
|
)
|
||||||
|
graph.db = db
|
||||||
|
res = await graph.get_node('"CHRISTMAS-TIME"')
|
||||||
|
print("Node is: ", res)
|
||||||
|
|
||||||
|
|
||||||
|
async def create_edge_with_age():
|
||||||
|
await db.initdb()
|
||||||
|
graph = PGGraphStorage(
|
||||||
|
namespace="chunk_entity_relation",
|
||||||
|
global_config={},
|
||||||
|
embedding_func=None,
|
||||||
|
)
|
||||||
|
graph.db = db
|
||||||
|
await graph.upsert_node('"THE CRATCHITS"', {"hello": "world"})
|
||||||
|
await graph.upsert_node('"THE GIRLS"', {"world": "hello"})
|
||||||
|
await graph.upsert_edge(
|
||||||
|
'"THE CRATCHITS"',
|
||||||
|
'"THE GIRLS"',
|
||||||
|
edge_data={
|
||||||
|
"weight": 7.0,
|
||||||
|
"description": '"The girls are part of the Cratchit family, contributing to their collective efforts and shared experiences.',
|
||||||
|
"keywords": '"family, collective effort"',
|
||||||
|
"source_id": "chunk-1d4b58de5429cd1261370c231c8673e8",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
res = await graph.get_edge("THE CRATCHITS", '"THE GIRLS"')
|
||||||
|
print("Edge is: ", res)
|
||||||
|
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
pool = await get_pool()
|
||||||
|
sql = r"SELECT * FROM ag_catalog.cypher('dickens', $$ MATCH (n:帅哥) RETURN n $$) AS (n ag_catalog.agtype)"
|
||||||
|
# cypher = "MATCH (n:how_are_you_doing) RETURN n"
|
||||||
|
async with pool.acquire() as conn:
|
||||||
|
try:
|
||||||
|
await conn.execute(
|
||||||
|
"""SET search_path = ag_catalog, "$user", public;select create_graph('dickens')"""
|
||||||
|
)
|
||||||
|
except asyncpg.exceptions.InvalidSchemaNameError:
|
||||||
|
print("create_graph already exists")
|
||||||
|
# stmt = await conn.prepare(sql)
|
||||||
|
row = await conn.fetch(sql)
|
||||||
|
print("row is: ", row)
|
||||||
|
|
||||||
|
row = await conn.fetchrow("select '100'::int + 200 as result")
|
||||||
|
print(row) # <Record result=300>
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(query_with_age())
|
@@ -85,8 +85,12 @@ ChromaVectorDBStorage = lazy_external_import(".kg.chroma_impl", "ChromaVectorDBS
|
|||||||
TiDBKVStorage = lazy_external_import(".kg.tidb_impl", "TiDBKVStorage")
|
TiDBKVStorage = lazy_external_import(".kg.tidb_impl", "TiDBKVStorage")
|
||||||
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
|
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
|
||||||
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
|
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
|
||||||
|
PGKVStorage = lazy_external_import(".kg.postgres_impl", "PGKVStorage")
|
||||||
|
PGVectorStorage = lazy_external_import(".kg.postgres_impl", "PGVectorStorage")
|
||||||
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
|
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
|
||||||
|
PGGraphStorage = lazy_external_import(".kg.postgres_impl", "PGGraphStorage")
|
||||||
GremlinStorage = lazy_external_import(".kg.gremlin_impl", "GremlinStorage")
|
GremlinStorage = lazy_external_import(".kg.gremlin_impl", "GremlinStorage")
|
||||||
|
PGDocStatusStorage = lazy_external_import(".kg.postgres_impl", "PGDocStatusStorage")
|
||||||
|
|
||||||
|
|
||||||
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
||||||
@@ -297,6 +301,10 @@ class LightRAG:
|
|||||||
"Neo4JStorage": Neo4JStorage,
|
"Neo4JStorage": Neo4JStorage,
|
||||||
"OracleGraphStorage": OracleGraphStorage,
|
"OracleGraphStorage": OracleGraphStorage,
|
||||||
"AGEStorage": AGEStorage,
|
"AGEStorage": AGEStorage,
|
||||||
|
"PGGraphStorage": PGGraphStorage,
|
||||||
|
"PGKVStorage": PGKVStorage,
|
||||||
|
"PGDocStatusStorage": PGDocStatusStorage,
|
||||||
|
"PGVectorStorage": PGVectorStorage,
|
||||||
"TiDBGraphStorage": TiDBGraphStorage,
|
"TiDBGraphStorage": TiDBGraphStorage,
|
||||||
"GremlinStorage": GremlinStorage,
|
"GremlinStorage": GremlinStorage,
|
||||||
# "ArangoDBStorage": ArangoDBStorage
|
# "ArangoDBStorage": ArangoDBStorage
|
||||||
|
@@ -1,29 +1,38 @@
|
|||||||
accelerate
|
accelerate
|
||||||
aioboto3
|
aioboto3~=13.3.0
|
||||||
aiohttp
|
aiofiles~=24.1.0
|
||||||
|
aiohttp~=3.11.11
|
||||||
|
asyncpg~=0.30.0
|
||||||
|
|
||||||
# database packages
|
# database packages
|
||||||
graspologic
|
graspologic
|
||||||
gremlinpython
|
gremlinpython
|
||||||
hnswlib
|
hnswlib
|
||||||
nano-vectordb
|
nano-vectordb
|
||||||
neo4j
|
neo4j~=5.27.0
|
||||||
networkx
|
networkx~=3.2.1
|
||||||
ollama
|
|
||||||
openai
|
numpy~=2.2.0
|
||||||
|
ollama~=0.4.4
|
||||||
|
openai~=1.58.1
|
||||||
oracledb
|
oracledb
|
||||||
psycopg[binary,pool]
|
psycopg-pool~=3.2.4
|
||||||
|
psycopg[binary,pool]~=3.2.3
|
||||||
|
pydantic~=2.10.4
|
||||||
pymilvus
|
pymilvus
|
||||||
pymongo
|
pymongo
|
||||||
pymysql
|
pymysql
|
||||||
pyvis
|
python-dotenv~=1.0.1
|
||||||
|
pyvis~=0.3.2
|
||||||
|
setuptools~=70.0.0
|
||||||
# lmdeploy[all]
|
# lmdeploy[all]
|
||||||
sqlalchemy
|
sqlalchemy~=2.0.36
|
||||||
tenacity
|
tenacity~=9.0.0
|
||||||
|
|
||||||
|
|
||||||
# LLM packages
|
# LLM packages
|
||||||
tiktoken
|
tiktoken~=0.8.0
|
||||||
torch
|
torch~=2.5.1+cu121
|
||||||
transformers
|
tqdm~=4.67.1
|
||||||
|
transformers~=4.47.1
|
||||||
xxhash
|
xxhash
|
||||||
|
Reference in New Issue
Block a user