Refactor cache handling logic for better readability, keep function unchanged.
This commit is contained in:
@@ -490,56 +490,50 @@ async def handle_cache(
|
||||
if hashing_kv is None or not hashing_kv.global_config.get("enable_llm_cache"):
|
||||
return None, None, None, None
|
||||
|
||||
# For default mode, only use simple cache matching
|
||||
if mode == "default":
|
||||
if exists_func(hashing_kv, "get_by_mode_and_id"):
|
||||
mode_cache = await hashing_kv.get_by_mode_and_id(mode, args_hash) or {}
|
||||
else:
|
||||
mode_cache = await hashing_kv.get_by_id(mode) or {}
|
||||
if args_hash in mode_cache:
|
||||
return mode_cache[args_hash]["return"], None, None, None
|
||||
return None, None, None, None
|
||||
|
||||
# Get embedding cache configuration
|
||||
embedding_cache_config = hashing_kv.global_config.get(
|
||||
"embedding_cache_config",
|
||||
{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False},
|
||||
)
|
||||
is_embedding_cache_enabled = embedding_cache_config["enabled"]
|
||||
use_llm_check = embedding_cache_config.get("use_llm_check", False)
|
||||
|
||||
quantized = min_val = max_val = None
|
||||
if is_embedding_cache_enabled:
|
||||
# Use embedding cache
|
||||
current_embedding = await hashing_kv.embedding_func([prompt])
|
||||
llm_model_func = (
|
||||
hashing_kv.llm_model_func if hasattr(hashing_kv, "llm_model_func") else None
|
||||
if mode != "default":
|
||||
# Get embedding cache configuration
|
||||
embedding_cache_config = hashing_kv.global_config.get(
|
||||
"embedding_cache_config",
|
||||
{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False},
|
||||
)
|
||||
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
|
||||
best_cached_response = await get_best_cached_response(
|
||||
hashing_kv,
|
||||
current_embedding[0],
|
||||
similarity_threshold=embedding_cache_config["similarity_threshold"],
|
||||
mode=mode,
|
||||
use_llm_check=use_llm_check,
|
||||
llm_func=llm
|
||||
if (use_llm_check and llm is not None)
|
||||
else (llm_model_func if use_llm_check else None),
|
||||
original_prompt=prompt if use_llm_check else None,
|
||||
cache_type=cache_type,
|
||||
)
|
||||
if best_cached_response is not None:
|
||||
return best_cached_response, None, None, None
|
||||
is_embedding_cache_enabled = embedding_cache_config["enabled"]
|
||||
use_llm_check = embedding_cache_config.get("use_llm_check", False)
|
||||
|
||||
quantized = min_val = max_val = None
|
||||
if is_embedding_cache_enabled:
|
||||
# Use embedding cache
|
||||
current_embedding = await hashing_kv.embedding_func([prompt])
|
||||
llm_model_func = (
|
||||
hashing_kv.llm_model_func if hasattr(hashing_kv, "llm_model_func") else None
|
||||
)
|
||||
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
|
||||
best_cached_response = await get_best_cached_response(
|
||||
hashing_kv,
|
||||
current_embedding[0],
|
||||
similarity_threshold=embedding_cache_config["similarity_threshold"],
|
||||
mode=mode,
|
||||
use_llm_check=use_llm_check,
|
||||
llm_func=llm
|
||||
if (use_llm_check and llm is not None)
|
||||
else (llm_model_func if use_llm_check else None),
|
||||
original_prompt=prompt if use_llm_check else None,
|
||||
cache_type=cache_type,
|
||||
)
|
||||
if best_cached_response is not None:
|
||||
return best_cached_response, None, None, None
|
||||
else:
|
||||
return None, quantized, min_val, max_val
|
||||
|
||||
# For default mode(extract_entities or naive query) or is_embedding_cache_enabled is False
|
||||
# Use regular cache
|
||||
if exists_func(hashing_kv, "get_by_mode_and_id"):
|
||||
mode_cache = await hashing_kv.get_by_mode_and_id(mode, args_hash) or {}
|
||||
else:
|
||||
# Use regular cache
|
||||
if exists_func(hashing_kv, "get_by_mode_and_id"):
|
||||
mode_cache = await hashing_kv.get_by_mode_and_id(mode, args_hash) or {}
|
||||
else:
|
||||
mode_cache = await hashing_kv.get_by_id(mode) or {}
|
||||
if args_hash in mode_cache:
|
||||
return mode_cache[args_hash]["return"], None, None, None
|
||||
mode_cache = await hashing_kv.get_by_id(mode) or {}
|
||||
if args_hash in mode_cache:
|
||||
return mode_cache[args_hash]["return"], None, None, None
|
||||
|
||||
return None, quantized, min_val, max_val
|
||||
return None, None, None, None
|
||||
|
||||
|
||||
@dataclass
|
||||
|
Reference in New Issue
Block a user