Added support for Amazon Bedrock models
This commit is contained in:
48
examples/lightrag_bedrock_demo.py
Normal file
48
examples/lightrag_bedrock_demo.py
Normal file
@@ -0,0 +1,48 @@
|
||||
"""
|
||||
LightRAG meets Amazon Bedrock ⛰️
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import bedrock_complete, bedrock_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=bedrock_complete,
|
||||
llm_model_name="anthropic.claude-3-haiku-20240307-v1:0",
|
||||
node2vec_params = {
|
||||
'dimensions': 1024,
|
||||
'num_walks': 10,
|
||||
'walk_length': 40,
|
||||
'window_size': 2,
|
||||
'iterations': 3,
|
||||
'random_seed': 3
|
||||
},
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: bedrock_embedding(texts)
|
||||
)
|
||||
)
|
||||
|
||||
with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
|
||||
# Local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
|
||||
# Global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
|
||||
# Hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
Reference in New Issue
Block a user