Optimize document processing pipeline with better status tracking & batch handling

• Add upfront doc processing check
• Optimize pipeline status updates
This commit is contained in:
yangdx
2025-03-02 11:09:32 +08:00
parent 1a5eb20003
commit 7124845e55

View File

@@ -706,10 +706,27 @@ class LightRAG:
pipeline_status_lock = get_pipeline_status_lock()
# Check if another process is already processing the queue
process_documents = False
async with pipeline_status_lock:
# Ensure only one worker is processing documents
if not pipeline_status.get("busy", False):
# 先检查是否有需要处理的文档
processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED),
self.doc_status.get_docs_by_status(DocStatus.PENDING),
)
to_process_docs: dict[str, DocProcessingStatus] = {}
to_process_docs.update(processing_docs)
to_process_docs.update(failed_docs)
to_process_docs.update(pending_docs)
# 如果没有需要处理的文档,直接返回,保留 pipeline_status 中的内容不变
if not to_process_docs:
logger.info("No documents to process")
return
# 有文档需要处理,更新 pipeline_status
pipeline_status.update(
{
"busy": True,
@@ -723,37 +740,18 @@ class LightRAG:
}
)
# Cleaning history_messages without breaking it as a shared list object
try:
del pipeline_status["history_messages"][:]
except Exception as e:
logger.error(f"Error clearing pipeline history_messages: {str(e)}")
process_documents = True
else:
# Another process is busy, just set request flag and return
pipeline_status["request_pending"] = True
logger.info(
"Another process is already processing the document queue. Request queued."
)
if not process_documents:
return
try:
# Process documents until no more documents or requests
while True:
# 1. Get all pending, failed, and abnormally terminated processing documents.
processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED),
self.doc_status.get_docs_by_status(DocStatus.PENDING),
)
to_process_docs: dict[str, DocProcessingStatus] = {}
to_process_docs.update(processing_docs)
to_process_docs.update(failed_docs)
to_process_docs.update(pending_docs)
if not to_process_docs:
log_message = "All documents have been processed or are duplicates"
logger.info(log_message)
@@ -761,20 +759,18 @@ class LightRAG:
pipeline_status["history_messages"].append(log_message)
break
# Update pipeline status with document count (with lock)
pipeline_status["docs"] = len(to_process_docs)
# 2. split docs into chunks, insert chunks, update doc status
docs_batches = [
list(to_process_docs.items())[i : i + self.max_parallel_insert]
for i in range(0, len(to_process_docs), self.max_parallel_insert)
]
# Update pipeline status with batch information (directly, as it's atomic)
pipeline_status.update({"batchs": len(docs_batches), "cur_batch": 0})
log_message = f"Number of batches to process: {len(docs_batches)}."
logger.info(log_message)
# Update pipeline status with current batch information
pipeline_status["docs"] += len(to_process_docs)
pipeline_status["batchs"] += len(docs_batches)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
@@ -782,7 +778,7 @@ class LightRAG:
# 3. iterate over batches
for batch_idx, docs_batch in enumerate(docs_batches):
# Update current batch in pipeline status (directly, as it's atomic)
pipeline_status["cur_batch"] = batch_idx + 1
pipeline_status["cur_batch"] += 1
async def batch(
batch_idx: int,
@@ -895,6 +891,18 @@ class LightRAG:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# 获取新的待处理文档
processing_docs, failed_docs, pending_docs = await asyncio.gather(
self.doc_status.get_docs_by_status(DocStatus.PROCESSING),
self.doc_status.get_docs_by_status(DocStatus.FAILED),
self.doc_status.get_docs_by_status(DocStatus.PENDING),
)
to_process_docs = {}
to_process_docs.update(processing_docs)
to_process_docs.update(failed_docs)
to_process_docs.update(pending_docs)
finally:
log_message = "Document processing pipeline completed"
logger.info(log_message)