cleanup
This commit is contained in:
@@ -231,23 +231,16 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
|||||||
class LightRAG:
|
class LightRAG:
|
||||||
"""LightRAG: Simple and Fast Retrieval-Augmented Generation."""
|
"""LightRAG: Simple and Fast Retrieval-Augmented Generation."""
|
||||||
|
|
||||||
|
# Directory
|
||||||
|
# ---
|
||||||
|
|
||||||
working_dir: str = field(
|
working_dir: str = field(
|
||||||
default=f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
|
default=f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
|
||||||
)
|
)
|
||||||
"""Directory where cache and temporary files are stored."""
|
"""Directory where cache and temporary files are stored."""
|
||||||
|
|
||||||
embedding_cache_config: dict[str, Any] = field(
|
# Storage
|
||||||
default={
|
# ---
|
||||||
"enabled": False,
|
|
||||||
"similarity_threshold": 0.95,
|
|
||||||
"use_llm_check": False,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
"""Configuration for embedding cache.
|
|
||||||
- enabled: If True, enables caching to avoid redundant computations.
|
|
||||||
- similarity_threshold: Minimum similarity score to use cached embeddings.
|
|
||||||
- use_llm_check: If True, validates cached embeddings using an LLM.
|
|
||||||
"""
|
|
||||||
|
|
||||||
kv_storage: str = field(default="JsonKVStorage")
|
kv_storage: str = field(default="JsonKVStorage")
|
||||||
"""Storage backend for key-value data."""
|
"""Storage backend for key-value data."""
|
||||||
@@ -262,13 +255,27 @@ class LightRAG:
|
|||||||
"""Storage type for tracking document processing statuses."""
|
"""Storage type for tracking document processing statuses."""
|
||||||
|
|
||||||
# Logging
|
# Logging
|
||||||
|
# ---
|
||||||
|
|
||||||
log_level: int = field(default=logger.level)
|
log_level: int = field(default=logger.level)
|
||||||
"""Logging level for the system (e.g., 'DEBUG', 'INFO', 'WARNING')."""
|
"""Logging level for the system (e.g., 'DEBUG', 'INFO', 'WARNING')."""
|
||||||
|
|
||||||
log_dir: str = field(default=os.getcwd())
|
log_dir: str = field(default=os.getcwd())
|
||||||
"""Directory where logs are stored. Defaults to the current working directory."""
|
"""Directory where logs are stored. Defaults to the current working directory."""
|
||||||
|
|
||||||
|
# Entity extraction
|
||||||
|
# ---
|
||||||
|
|
||||||
|
entity_extract_max_gleaning: int = field(default=1)
|
||||||
|
"""Maximum number of entity extraction attempts for ambiguous content."""
|
||||||
|
|
||||||
|
entity_summary_to_max_tokens: int = field(
|
||||||
|
default=int(os.getenv("MAX_TOKEN_SUMMARY", 500))
|
||||||
|
)
|
||||||
|
|
||||||
# Text chunking
|
# Text chunking
|
||||||
|
# ---
|
||||||
|
|
||||||
chunk_token_size: int = field(default=int(os.getenv("CHUNK_SIZE", 1200)))
|
chunk_token_size: int = field(default=int(os.getenv("CHUNK_SIZE", 1200)))
|
||||||
"""Maximum number of tokens per text chunk when splitting documents."""
|
"""Maximum number of tokens per text chunk when splitting documents."""
|
||||||
|
|
||||||
@@ -280,95 +287,8 @@ class LightRAG:
|
|||||||
tiktoken_model_name: str = field(default="gpt-4o-mini")
|
tiktoken_model_name: str = field(default="gpt-4o-mini")
|
||||||
"""Model name used for tokenization when chunking text."""
|
"""Model name used for tokenization when chunking text."""
|
||||||
|
|
||||||
# Entity extraction
|
|
||||||
entity_extract_max_gleaning: int = field(default=1)
|
|
||||||
"""Maximum number of entity extraction attempts for ambiguous content."""
|
|
||||||
|
|
||||||
entity_summary_to_max_tokens: int = field(
|
|
||||||
default=int(os.getenv("MAX_TOKEN_SUMMARY", 500))
|
|
||||||
)
|
|
||||||
"""Maximum number of tokens used for summarizing extracted entities."""
|
"""Maximum number of tokens used for summarizing extracted entities."""
|
||||||
|
|
||||||
# Node embedding
|
|
||||||
node_embedding_algorithm: str = field(default="node2vec")
|
|
||||||
"""Algorithm used for node embedding in knowledge graphs."""
|
|
||||||
|
|
||||||
node2vec_params: dict[str, int] = field(
|
|
||||||
default_factory=lambda: {
|
|
||||||
"dimensions": 1536,
|
|
||||||
"num_walks": 10,
|
|
||||||
"walk_length": 40,
|
|
||||||
"window_size": 2,
|
|
||||||
"iterations": 3,
|
|
||||||
"random_seed": 3,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
"""Configuration for the node2vec embedding algorithm:
|
|
||||||
- dimensions: Number of dimensions for embeddings.
|
|
||||||
- num_walks: Number of random walks per node.
|
|
||||||
- walk_length: Number of steps per random walk.
|
|
||||||
- window_size: Context window size for training.
|
|
||||||
- iterations: Number of iterations for training.
|
|
||||||
- random_seed: Seed value for reproducibility.
|
|
||||||
"""
|
|
||||||
|
|
||||||
embedding_func: EmbeddingFunc | None = field(default=None)
|
|
||||||
"""Function for computing text embeddings. Must be set before use."""
|
|
||||||
|
|
||||||
embedding_batch_num: int = field(default=32)
|
|
||||||
"""Batch size for embedding computations."""
|
|
||||||
|
|
||||||
embedding_func_max_async: int = field(default=16)
|
|
||||||
"""Maximum number of concurrent embedding function calls."""
|
|
||||||
|
|
||||||
# LLM Configuration
|
|
||||||
llm_model_func: Callable[..., object] | None = field(default=None)
|
|
||||||
"""Function for interacting with the large language model (LLM). Must be set before use."""
|
|
||||||
|
|
||||||
llm_model_name: str = field(default="gpt-4o-mini")
|
|
||||||
"""Name of the LLM model used for generating responses."""
|
|
||||||
|
|
||||||
llm_model_max_token_size: int = field(default=int(os.getenv("MAX_TOKENS", 32768)))
|
|
||||||
"""Maximum number of tokens allowed per LLM response."""
|
|
||||||
|
|
||||||
llm_model_max_async: int = field(default=int(os.getenv("MAX_ASYNC", 16)))
|
|
||||||
"""Maximum number of concurrent LLM calls."""
|
|
||||||
|
|
||||||
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
|
||||||
"""Additional keyword arguments passed to the LLM model function."""
|
|
||||||
|
|
||||||
# Storage
|
|
||||||
vector_db_storage_cls_kwargs: dict[str, Any] = field(default_factory=dict)
|
|
||||||
"""Additional parameters for vector database storage."""
|
|
||||||
|
|
||||||
namespace_prefix: str = field(default="")
|
|
||||||
"""Prefix for namespacing stored data across different environments."""
|
|
||||||
|
|
||||||
enable_llm_cache: bool = field(default=True)
|
|
||||||
"""Enables caching for LLM responses to avoid redundant computations."""
|
|
||||||
|
|
||||||
enable_llm_cache_for_entity_extract: bool = field(default=True)
|
|
||||||
"""If True, enables caching for entity extraction steps to reduce LLM costs."""
|
|
||||||
|
|
||||||
# Extensions
|
|
||||||
max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT", 20)))
|
|
||||||
"""Maximum number of parallel insert operations."""
|
|
||||||
|
|
||||||
addon_params: dict[str, Any] = field(default_factory=dict)
|
|
||||||
|
|
||||||
# Storages Management
|
|
||||||
auto_manage_storages_states: bool = field(default=True)
|
|
||||||
"""If True, lightrag will automatically calls initialize_storages and finalize_storages at the appropriate times."""
|
|
||||||
|
|
||||||
convert_response_to_json_func: Callable[[str], dict[str, Any]] = field(
|
|
||||||
default_factory=lambda: convert_response_to_json
|
|
||||||
)
|
|
||||||
"""
|
|
||||||
Custom function for converting LLM responses to JSON format.
|
|
||||||
|
|
||||||
The default function is :func:`.utils.convert_response_to_json`.
|
|
||||||
"""
|
|
||||||
|
|
||||||
chunking_func: Callable[
|
chunking_func: Callable[
|
||||||
[
|
[
|
||||||
str,
|
str,
|
||||||
@@ -399,6 +319,115 @@ class LightRAG:
|
|||||||
Defaults to `chunking_by_token_size` if not specified.
|
Defaults to `chunking_by_token_size` if not specified.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
# Node embedding
|
||||||
|
# ---
|
||||||
|
|
||||||
|
node_embedding_algorithm: str = field(default="node2vec")
|
||||||
|
"""Algorithm used for node embedding in knowledge graphs."""
|
||||||
|
|
||||||
|
node2vec_params: dict[str, int] = field(
|
||||||
|
default_factory=lambda: {
|
||||||
|
"dimensions": 1536,
|
||||||
|
"num_walks": 10,
|
||||||
|
"walk_length": 40,
|
||||||
|
"window_size": 2,
|
||||||
|
"iterations": 3,
|
||||||
|
"random_seed": 3,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
"""Configuration for the node2vec embedding algorithm:
|
||||||
|
- dimensions: Number of dimensions for embeddings.
|
||||||
|
- num_walks: Number of random walks per node.
|
||||||
|
- walk_length: Number of steps per random walk.
|
||||||
|
- window_size: Context window size for training.
|
||||||
|
- iterations: Number of iterations for training.
|
||||||
|
- random_seed: Seed value for reproducibility.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Embedding
|
||||||
|
# ---
|
||||||
|
|
||||||
|
embedding_func: EmbeddingFunc | None = field(default=None)
|
||||||
|
"""Function for computing text embeddings. Must be set before use."""
|
||||||
|
|
||||||
|
embedding_batch_num: int = field(default=32)
|
||||||
|
"""Batch size for embedding computations."""
|
||||||
|
|
||||||
|
embedding_func_max_async: int = field(default=16)
|
||||||
|
"""Maximum number of concurrent embedding function calls."""
|
||||||
|
|
||||||
|
embedding_cache_config: dict[str, Any] = field(
|
||||||
|
default={
|
||||||
|
"enabled": False,
|
||||||
|
"similarity_threshold": 0.95,
|
||||||
|
"use_llm_check": False,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
"""Configuration for embedding cache.
|
||||||
|
- enabled: If True, enables caching to avoid redundant computations.
|
||||||
|
- similarity_threshold: Minimum similarity score to use cached embeddings.
|
||||||
|
- use_llm_check: If True, validates cached embeddings using an LLM.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# LLM Configuration
|
||||||
|
# ---
|
||||||
|
|
||||||
|
llm_model_func: Callable[..., object] | None = field(default=None)
|
||||||
|
"""Function for interacting with the large language model (LLM). Must be set before use."""
|
||||||
|
|
||||||
|
llm_model_name: str = field(default="gpt-4o-mini")
|
||||||
|
"""Name of the LLM model used for generating responses."""
|
||||||
|
|
||||||
|
llm_model_max_token_size: int = field(default=int(os.getenv("MAX_TOKENS", 32768)))
|
||||||
|
"""Maximum number of tokens allowed per LLM response."""
|
||||||
|
|
||||||
|
llm_model_max_async: int = field(default=int(os.getenv("MAX_ASYNC", 16)))
|
||||||
|
"""Maximum number of concurrent LLM calls."""
|
||||||
|
|
||||||
|
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
||||||
|
"""Additional keyword arguments passed to the LLM model function."""
|
||||||
|
|
||||||
|
# Storage
|
||||||
|
# ---
|
||||||
|
|
||||||
|
vector_db_storage_cls_kwargs: dict[str, Any] = field(default_factory=dict)
|
||||||
|
"""Additional parameters for vector database storage."""
|
||||||
|
|
||||||
|
namespace_prefix: str = field(default="")
|
||||||
|
"""Prefix for namespacing stored data across different environments."""
|
||||||
|
|
||||||
|
enable_llm_cache: bool = field(default=True)
|
||||||
|
"""Enables caching for LLM responses to avoid redundant computations."""
|
||||||
|
|
||||||
|
enable_llm_cache_for_entity_extract: bool = field(default=True)
|
||||||
|
"""If True, enables caching for entity extraction steps to reduce LLM costs."""
|
||||||
|
|
||||||
|
# Extensions
|
||||||
|
# ---
|
||||||
|
|
||||||
|
max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT", 20)))
|
||||||
|
"""Maximum number of parallel insert operations."""
|
||||||
|
|
||||||
|
addon_params: dict[str, Any] = field(default_factory=dict)
|
||||||
|
|
||||||
|
# Storages Management
|
||||||
|
# ---
|
||||||
|
|
||||||
|
auto_manage_storages_states: bool = field(default=True)
|
||||||
|
"""If True, lightrag will automatically calls initialize_storages and finalize_storages at the appropriate times."""
|
||||||
|
|
||||||
|
# Storages Management
|
||||||
|
# ---
|
||||||
|
|
||||||
|
convert_response_to_json_func: Callable[[str], dict[str, Any]] = field(
|
||||||
|
default_factory=lambda: convert_response_to_json
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
Custom function for converting LLM responses to JSON format.
|
||||||
|
|
||||||
|
The default function is :func:`.utils.convert_response_to_json`.
|
||||||
|
"""
|
||||||
|
|
||||||
def verify_storage_implementation(
|
def verify_storage_implementation(
|
||||||
self, storage_type: str, storage_name: str
|
self, storage_type: str, storage_name: str
|
||||||
) -> None:
|
) -> None:
|
||||||
|
Reference in New Issue
Block a user