chore: added pre-commit-hooks and ruff formatting for commit-hooks
This commit is contained in:
@@ -1,4 +1,3 @@
|
||||
import os
|
||||
import re
|
||||
import json
|
||||
import jsonlines
|
||||
@@ -9,28 +8,28 @@ from openai import OpenAI
|
||||
def batch_eval(query_file, result1_file, result2_file, output_file_path):
|
||||
client = OpenAI()
|
||||
|
||||
with open(query_file, 'r') as f:
|
||||
with open(query_file, "r") as f:
|
||||
data = f.read()
|
||||
|
||||
queries = re.findall(r'- Question \d+: (.+)', data)
|
||||
queries = re.findall(r"- Question \d+: (.+)", data)
|
||||
|
||||
with open(result1_file, 'r') as f:
|
||||
with open(result1_file, "r") as f:
|
||||
answers1 = json.load(f)
|
||||
answers1 = [i['result'] for i in answers1]
|
||||
answers1 = [i["result"] for i in answers1]
|
||||
|
||||
with open(result2_file, 'r') as f:
|
||||
with open(result2_file, "r") as f:
|
||||
answers2 = json.load(f)
|
||||
answers2 = [i['result'] for i in answers2]
|
||||
answers2 = [i["result"] for i in answers2]
|
||||
|
||||
requests = []
|
||||
for i, (query, answer1, answer2) in enumerate(zip(queries, answers1, answers2)):
|
||||
sys_prompt = f"""
|
||||
sys_prompt = """
|
||||
---Role---
|
||||
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
|
||||
"""
|
||||
|
||||
prompt = f"""
|
||||
You will evaluate two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
|
||||
You will evaluate two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
|
||||
|
||||
- **Comprehensiveness**: How much detail does the answer provide to cover all aspects and details of the question?
|
||||
- **Diversity**: How varied and rich is the answer in providing different perspectives and insights on the question?
|
||||
@@ -69,7 +68,6 @@ def batch_eval(query_file, result1_file, result2_file, output_file_path):
|
||||
}}
|
||||
"""
|
||||
|
||||
|
||||
request_data = {
|
||||
"custom_id": f"request-{i+1}",
|
||||
"method": "POST",
|
||||
@@ -78,22 +76,21 @@ def batch_eval(query_file, result1_file, result2_file, output_file_path):
|
||||
"model": "gpt-4o-mini",
|
||||
"messages": [
|
||||
{"role": "system", "content": sys_prompt},
|
||||
{"role": "user", "content": prompt}
|
||||
{"role": "user", "content": prompt},
|
||||
],
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
requests.append(request_data)
|
||||
|
||||
with jsonlines.open(output_file_path, mode='w') as writer:
|
||||
with jsonlines.open(output_file_path, mode="w") as writer:
|
||||
for request in requests:
|
||||
writer.write(request)
|
||||
|
||||
print(f"Batch API requests written to {output_file_path}")
|
||||
|
||||
batch_input_file = client.files.create(
|
||||
file=open(output_file_path, "rb"),
|
||||
purpose="batch"
|
||||
file=open(output_file_path, "rb"), purpose="batch"
|
||||
)
|
||||
batch_input_file_id = batch_input_file.id
|
||||
|
||||
@@ -101,12 +98,11 @@ def batch_eval(query_file, result1_file, result2_file, output_file_path):
|
||||
input_file_id=batch_input_file_id,
|
||||
endpoint="/v1/chat/completions",
|
||||
completion_window="24h",
|
||||
metadata={
|
||||
"description": "nightly eval job"
|
||||
}
|
||||
metadata={"description": "nightly eval job"},
|
||||
)
|
||||
|
||||
print(f'Batch {batch.id} has been created.')
|
||||
print(f"Batch {batch.id} has been created.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
batch_eval()
|
||||
batch_eval()
|
||||
|
@@ -1,9 +1,8 @@
|
||||
import os
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
# os.environ["OPENAI_API_KEY"] = ""
|
||||
|
||||
|
||||
def openai_complete_if_cache(
|
||||
model="gpt-4o-mini", prompt=None, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
@@ -47,10 +46,10 @@ if __name__ == "__main__":
|
||||
...
|
||||
"""
|
||||
|
||||
result = openai_complete_if_cache(model='gpt-4o-mini', prompt=prompt)
|
||||
result = openai_complete_if_cache(model="gpt-4o-mini", prompt=prompt)
|
||||
|
||||
file_path = f"./queries.txt"
|
||||
file_path = "./queries.txt"
|
||||
with open(file_path, "w") as file:
|
||||
file.write(result)
|
||||
|
||||
print(f"Queries written to {file_path}")
|
||||
print(f"Queries written to {file_path}")
|
||||
|
@@ -122,4 +122,4 @@ print("\nResult (Global):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="global")))
|
||||
|
||||
print("\nResult (Hybrid):")
|
||||
print(rag.query(query_text, param=QueryParam(mode="hybrid")))
|
||||
print(rag.query(query_text, param=QueryParam(mode="hybrid")))
|
||||
|
@@ -20,13 +20,11 @@ rag = LightRAG(
|
||||
llm_model_func=bedrock_complete,
|
||||
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=1024,
|
||||
max_token_size=8192,
|
||||
func=bedrock_embedding
|
||||
)
|
||||
embedding_dim=1024, max_token_size=8192, func=bedrock_embedding
|
||||
),
|
||||
)
|
||||
|
||||
with open("./book.txt", 'r', encoding='utf-8') as f:
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
for mode in ["naive", "local", "global", "hybrid"]:
|
||||
@@ -34,8 +32,5 @@ for mode in ["naive", "local", "global", "hybrid"]:
|
||||
print(f"| {mode.capitalize()} |")
|
||||
print("+-" + "-" * len(mode) + "-+\n")
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode=mode)
|
||||
)
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode=mode))
|
||||
)
|
||||
|
@@ -1,10 +1,9 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import hf_model_complete, hf_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from transformers import AutoModel,AutoTokenizer
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -13,16 +12,20 @@ if not os.path.exists(WORKING_DIR):
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=hf_model_complete,
|
||||
llm_model_name='meta-llama/Llama-3.1-8B-Instruct',
|
||||
llm_model_func=hf_model_complete,
|
||||
llm_model_name="meta-llama/Llama-3.1-8B-Instruct",
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=384,
|
||||
max_token_size=5000,
|
||||
func=lambda texts: hf_embedding(
|
||||
texts,
|
||||
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
|
||||
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
||||
)
|
||||
texts,
|
||||
tokenizer=AutoTokenizer.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
),
|
||||
embed_model=AutoModel.from_pretrained(
|
||||
"sentence-transformers/all-MiniLM-L6-v2"
|
||||
),
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
@@ -31,13 +34,21 @@ with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
@@ -11,15 +11,12 @@ if not os.path.exists(WORKING_DIR):
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name='your_model_name',
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name="your_model_name",
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
texts,
|
||||
embed_model="nomic-embed-text"
|
||||
)
|
||||
func=lambda texts: ollama_embedding(texts, embed_model="nomic-embed-text"),
|
||||
),
|
||||
)
|
||||
|
||||
@@ -28,13 +25,21 @@ with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
@@ -6,10 +6,11 @@ from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
|
||||
async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
@@ -20,17 +21,19 @@ async def llm_model_func(
|
||||
history_messages=history_messages,
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar",
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model="solar-embedding-1-large-query",
|
||||
api_key=os.getenv("UPSTAGE_API_KEY"),
|
||||
base_url="https://api.upstage.ai/v1/solar"
|
||||
base_url="https://api.upstage.ai/v1/solar",
|
||||
)
|
||||
|
||||
|
||||
# function test
|
||||
async def test_funcs():
|
||||
result = await llm_model_func("How are you?")
|
||||
@@ -39,6 +42,7 @@ async def test_funcs():
|
||||
result = await embedding_func(["How are you?"])
|
||||
print("embedding_func: ", result)
|
||||
|
||||
|
||||
asyncio.run(test_funcs())
|
||||
|
||||
|
||||
@@ -46,10 +50,8 @@ rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=4096,
|
||||
max_token_size=8192,
|
||||
func=embedding_func
|
||||
)
|
||||
embedding_dim=4096, max_token_size=8192, func=embedding_func
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@@ -57,13 +59,21 @@ with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
@@ -1,9 +1,7 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
||||
from transformers import AutoModel,AutoTokenizer
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
@@ -12,7 +10,7 @@ if not os.path.exists(WORKING_DIR):
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
# llm_model_func=gpt_4o_complete
|
||||
)
|
||||
|
||||
@@ -21,13 +19,21 @@ with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
||||
|
Reference in New Issue
Block a user