chore: added pre-commit-hooks and ruff formatting for commit-hooks

This commit is contained in:
Sanketh Kumar
2024-10-19 09:43:17 +05:30
parent b854ab4737
commit 744dad339d
26 changed files with 635 additions and 393 deletions

View File

@@ -6,10 +6,11 @@ from lightrag.utils import EmbeddingFunc
import numpy as np
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
@@ -20,17 +21,19 @@ async def llm_model_func(
history_messages=history_messages,
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
**kwargs
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embedding(
texts,
model="solar-embedding-1-large-query",
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar"
base_url="https://api.upstage.ai/v1/solar",
)
# function test
async def test_funcs():
result = await llm_model_func("How are you?")
@@ -39,6 +42,7 @@ async def test_funcs():
result = await embedding_func(["How are you?"])
print("embedding_func: ", result)
asyncio.run(test_funcs())
@@ -46,10 +50,8 @@ rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=4096,
max_token_size=8192,
func=embedding_func
)
embedding_dim=4096, max_token_size=8192, func=embedding_func
),
)
@@ -57,13 +59,21 @@ with open("./book.txt") as f:
rag.insert(f.read())
# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
)
# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
)
# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
)
# Perform hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
)