fix bug
This commit is contained in:
@@ -16,11 +16,13 @@ rag = LightRAG(
|
|||||||
llm_model_func=hf_model_complete,
|
llm_model_func=hf_model_complete,
|
||||||
llm_model_name='meta-llama/Llama-3.1-8B-Instruct',
|
llm_model_name='meta-llama/Llama-3.1-8B-Instruct',
|
||||||
embedding_func=EmbeddingFunc(
|
embedding_func=EmbeddingFunc(
|
||||||
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
|
|
||||||
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
|
|
||||||
embedding_dim=384,
|
embedding_dim=384,
|
||||||
max_token_size=5000,
|
max_token_size=5000,
|
||||||
func=hf_embedding
|
func=lambda texts: hf_embedding(
|
||||||
|
texts,
|
||||||
|
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
|
||||||
|
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
||||||
|
)
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@@ -5,7 +5,7 @@ from lightrag import LightRAG, QueryParam
|
|||||||
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
||||||
from transformers import AutoModel,AutoTokenizer
|
from transformers import AutoModel,AutoTokenizer
|
||||||
|
|
||||||
WORKING_DIR = "/home/zrguo/code/myrag/agriculture"
|
WORKING_DIR = "./dickens"
|
||||||
|
|
||||||
if not os.path.exists(WORKING_DIR):
|
if not os.path.exists(WORKING_DIR):
|
||||||
os.mkdir(WORKING_DIR)
|
os.mkdir(WORKING_DIR)
|
||||||
|
@@ -1,5 +1,5 @@
|
|||||||
from .lightrag import LightRAG, QueryParam
|
from .lightrag import LightRAG, QueryParam
|
||||||
|
|
||||||
__version__ = "0.0.4"
|
__version__ = "0.0.5"
|
||||||
__author__ = "Zirui Guo"
|
__author__ = "Zirui Guo"
|
||||||
__url__ = "https://github.com/HKUDS/LightRAG"
|
__url__ = "https://github.com/HKUDS/LightRAG"
|
||||||
|
@@ -141,11 +141,6 @@ async def openai_embedding(texts: list[str]) -> np.ndarray:
|
|||||||
return np.array([dp.embedding for dp in response.data])
|
return np.array([dp.embedding for dp in response.data])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@wrap_embedding_func_with_attrs(
|
|
||||||
embedding_dim=384,
|
|
||||||
max_token_size=5000,
|
|
||||||
)
|
|
||||||
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
||||||
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
input_ids = tokenizer(texts, return_tensors='pt', padding=True, truncation=True).input_ids
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
|
Reference in New Issue
Block a user