fixed bugs

This commit is contained in:
Yannick Stephan
2025-02-09 19:21:49 +01:00
parent 832a9bb6fb
commit 7d63898015
7 changed files with 67 additions and 61 deletions

View File

@@ -90,7 +90,7 @@ class BaseKVStorage(StorageNameSpace):
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]: async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
raise NotImplementedError raise NotImplementedError
async def filter_keys(self, data: list[str]) -> set[str]: async def filter_keys(self, data: set[str]) -> set[str]:
"""return un-exist keys""" """return un-exist keys"""
raise NotImplementedError raise NotImplementedError

View File

@@ -38,7 +38,7 @@ class JsonKVStorage(BaseKVStorage):
for id in ids for id in ids
] ]
async def filter_keys(self, data: list[str]) -> set[str]: async def filter_keys(self, data: set[str]) -> set[str]:
return set([s for s in data if s not in self._data]) return set([s for s in data if s not in self._data])
async def upsert(self, data: dict[str, dict[str, Any]]) -> None: async def upsert(self, data: dict[str, dict[str, Any]]) -> None:

View File

@@ -52,17 +52,16 @@ import os
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any, Union from typing import Any, Union
from lightrag.utils import (
logger,
load_json,
write_json,
)
from lightrag.base import ( from lightrag.base import (
DocStatus,
DocProcessingStatus, DocProcessingStatus,
DocStatus,
DocStatusStorage, DocStatusStorage,
) )
from lightrag.utils import (
load_json,
logger,
write_json,
)
@dataclass @dataclass
@@ -75,15 +74,17 @@ class JsonDocStatusStorage(DocStatusStorage):
self._data: dict[str, Any] = load_json(self._file_name) or {} self._data: dict[str, Any] = load_json(self._file_name) or {}
logger.info(f"Loaded document status storage with {len(self._data)} records") logger.info(f"Loaded document status storage with {len(self._data)} records")
async def filter_keys(self, data: list[str]) -> set[str]: async def filter_keys(self, data: set[str]) -> set[str]:
"""Return keys that should be processed (not in storage or not successfully processed)""" """Return keys that should be processed (not in storage or not successfully processed)"""
return set( return {k for k, _ in self._data.items() if k in data}
[
k async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
for k in data result: list[dict[str, Any]] = []
if k not in self._data or self._data[k]["status"] != DocStatus.PROCESSED for id in ids:
] data = self._data.get(id, None)
) if data:
result.append(data)
return result
async def get_status_counts(self) -> dict[str, int]: async def get_status_counts(self) -> dict[str, int]:
"""Get counts of documents in each status""" """Get counts of documents in each status"""
@@ -94,11 +95,19 @@ class JsonDocStatusStorage(DocStatusStorage):
async def get_failed_docs(self) -> dict[str, DocProcessingStatus]: async def get_failed_docs(self) -> dict[str, DocProcessingStatus]:
"""Get all failed documents""" """Get all failed documents"""
return {k: v for k, v in self._data.items() if v["status"] == DocStatus.FAILED} return {
k: DocProcessingStatus(**v)
for k, v in self._data.items()
if v["status"] == DocStatus.FAILED
}
async def get_pending_docs(self) -> dict[str, DocProcessingStatus]: async def get_pending_docs(self) -> dict[str, DocProcessingStatus]:
"""Get all pending documents""" """Get all pending documents"""
return {k: v for k, v in self._data.items() if v["status"] == DocStatus.PENDING} return {
k: DocProcessingStatus(**v)
for k, v in self._data.items()
if v["status"] == DocStatus.PENDING
}
async def index_done_callback(self): async def index_done_callback(self):
"""Save data to file after indexing""" """Save data to file after indexing"""
@@ -118,7 +127,11 @@ class JsonDocStatusStorage(DocStatusStorage):
async def get(self, doc_id: str) -> Union[DocProcessingStatus, None]: async def get(self, doc_id: str) -> Union[DocProcessingStatus, None]:
"""Get document status by ID""" """Get document status by ID"""
return self._data.get(doc_id) data = self._data.get(doc_id)
if data:
return DocProcessingStatus(**data)
else:
return None
async def delete(self, doc_ids: list[str]): async def delete(self, doc_ids: list[str]):
"""Delete document status by IDs""" """Delete document status by IDs"""

View File

@@ -35,7 +35,7 @@ class MongoKVStorage(BaseKVStorage):
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]: async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
return list(self._data.find({"_id": {"$in": ids}})) return list(self._data.find({"_id": {"$in": ids}}))
async def filter_keys(self, data: list[str]) -> set[str]: async def filter_keys(self, data: set[str]) -> set[str]:
existing_ids = [ existing_ids = [
str(x["_id"]) for x in self._data.find({"_id": {"$in": data}}, {"_id": 1}) str(x["_id"]) for x in self._data.find({"_id": {"$in": data}}, {"_id": 1})
] ]

View File

@@ -421,7 +421,7 @@ class PGDocStatusStorage(DocStatusStorage):
def __post_init__(self): def __post_init__(self):
pass pass
async def filter_keys(self, data: list[str]) -> set[str]: async def filter_keys(self, data: set[str]) -> set[str]:
"""Return keys that don't exist in storage""" """Return keys that don't exist in storage"""
keys = ",".join([f"'{_id}'" for _id in data]) keys = ",".join([f"'{_id}'" for _id in data])
sql = ( sql = (

View File

@@ -32,7 +32,7 @@ class RedisKVStorage(BaseKVStorage):
results = await pipe.execute() results = await pipe.execute()
return [json.loads(result) if result else None for result in results] return [json.loads(result) if result else None for result in results]
async def filter_keys(self, data: list[str]) -> set[str]: async def filter_keys(self, data: set[str]) -> set[str]:
pipe = self._redis.pipeline() pipe = self._redis.pipeline()
for key in data: for key in data:
pipe.exists(f"{self.namespace}:{key}") pipe.exists(f"{self.namespace}:{key}")

View File

@@ -1,28 +1,11 @@
import asyncio import asyncio
import os import os
from tqdm.asyncio import tqdm as tqdm_async from collections.abc import Coroutine
from dataclasses import asdict, dataclass, field from dataclasses import asdict, dataclass, field
from datetime import datetime from datetime import datetime
from functools import partial from functools import partial
from typing import Any, Callable, Coroutine, Optional, Type, Union, cast from typing import Any, Callable, Optional, Type, Union, cast
from .operate import (
chunking_by_token_size,
extract_entities,
extract_keywords_only,
kg_query,
kg_query_with_keywords,
mix_kg_vector_query,
naive_query,
)
from .utils import (
EmbeddingFunc,
compute_mdhash_id,
limit_async_func_call,
convert_response_to_json,
logger,
set_logger,
)
from .base import ( from .base import (
BaseGraphStorage, BaseGraphStorage,
BaseKVStorage, BaseKVStorage,
@@ -33,10 +16,25 @@ from .base import (
QueryParam, QueryParam,
StorageNameSpace, StorageNameSpace,
) )
from .namespace import NameSpace, make_namespace from .namespace import NameSpace, make_namespace
from .operate import (
chunking_by_token_size,
extract_entities,
extract_keywords_only,
kg_query,
kg_query_with_keywords,
mix_kg_vector_query,
naive_query,
)
from .prompt import GRAPH_FIELD_SEP from .prompt import GRAPH_FIELD_SEP
from .utils import (
EmbeddingFunc,
compute_mdhash_id,
convert_response_to_json,
limit_async_func_call,
logger,
set_logger,
)
STORAGES = { STORAGES = {
"NetworkXStorage": ".kg.networkx_impl", "NetworkXStorage": ".kg.networkx_impl",
@@ -67,7 +65,6 @@ STORAGES = {
def lazy_external_import(module_name: str, class_name: str): def lazy_external_import(module_name: str, class_name: str):
"""Lazily import a class from an external module based on the package of the caller.""" """Lazily import a class from an external module based on the package of the caller."""
# Get the caller's module and package # Get the caller's module and package
import inspect import inspect
@@ -113,7 +110,7 @@ def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
@dataclass @dataclass
class LightRAG: class LightRAG:
working_dir: str = field( working_dir: str = field(
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}" default_factory=lambda: f'./lightrag_cache_{datetime.now().strftime("%Y-%m-%d-%H:%M:%S")}'
) )
# Default not to use embedding cache # Default not to use embedding cache
embedding_cache_config: dict = field( embedding_cache_config: dict = field(
@@ -496,15 +493,15 @@ class LightRAG:
} }
# 3. Filter out already processed documents # 3. Filter out already processed documents
add_doc_keys: set[str] = set() new_doc_keys: set[str] = set()
# Get docs ids # Get docs ids
in_process_keys = list(new_docs.keys()) in_process_keys = set(new_docs.keys())
# Get in progress docs ids # Get in progress docs ids
excluded_ids = await self.doc_status.get_by_ids(in_process_keys) excluded_ids = await self.doc_status.filter_keys(list(in_process_keys))
# Exclude already in process # Exclude already in process
add_doc_keys = new_docs.keys() - excluded_ids new_doc_keys = in_process_keys - excluded_ids
# Filter # Filter
new_docs = {k: v for k, v in new_docs.items() if k in add_doc_keys} new_docs = {doc_id: new_docs[doc_id] for doc_id in new_doc_keys}
if not new_docs: if not new_docs:
logger.info("All documents have been processed or are duplicates") logger.info("All documents have been processed or are duplicates")
@@ -562,15 +559,12 @@ class LightRAG:
# 3. iterate over batches # 3. iterate over batches
tasks: dict[str, list[Coroutine[Any, Any, None]]] = {} tasks: dict[str, list[Coroutine[Any, Any, None]]] = {}
for batch_idx, ids_doc_processing_status in tqdm_async(
enumerate(batch_docs_list), logger.info(f"Number of batches to process: {len(batch_docs_list)}.")
desc="Process Batches",
): for batch_idx, ids_doc_processing_status in enumerate(batch_docs_list):
# 4. iterate over batch # 4. iterate over batch
for id_doc_processing_status in tqdm_async( for id_doc_processing_status in ids_doc_processing_status:
ids_doc_processing_status,
desc=f"Process Batch {batch_idx}",
):
id_doc, status_doc = id_doc_processing_status id_doc, status_doc = id_doc_processing_status
# Update status in processing # Update status in processing
await self.doc_status.upsert( await self.doc_status.upsert(
@@ -644,6 +638,7 @@ class LightRAG:
} }
) )
continue continue
logger.info(f"Completed batch {batch_idx + 1} of {len(batch_docs_list)}.")
async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None: async def _process_entity_relation_graph(self, chunk: dict[str, Any]) -> None:
try: try:
@@ -895,7 +890,6 @@ class LightRAG:
1. Extract keywords from the 'query' using new function in operate.py. 1. Extract keywords from the 'query' using new function in operate.py.
2. Then run the standard aquery() flow with the final prompt (formatted_question). 2. Then run the standard aquery() flow with the final prompt (formatted_question).
""" """
loop = always_get_an_event_loop() loop = always_get_an_event_loop()
return loop.run_until_complete( return loop.run_until_complete(
self.aquery_with_separate_keyword_extraction(query, prompt, param) self.aquery_with_separate_keyword_extraction(query, prompt, param)
@@ -908,7 +902,6 @@ class LightRAG:
1. Calls extract_keywords_only to get HL/LL keywords from 'query'. 1. Calls extract_keywords_only to get HL/LL keywords from 'query'.
2. Then calls kg_query(...) or naive_query(...), etc. as the main query, while also injecting the newly extracted keywords if needed. 2. Then calls kg_query(...) or naive_query(...), etc. as the main query, while also injecting the newly extracted keywords if needed.
""" """
# --------------------- # ---------------------
# STEP 1: Keyword Extraction # STEP 1: Keyword Extraction
# --------------------- # ---------------------