Added openai api
This commit is contained in:
369
api/openai_lightrag_server.py
Normal file
369
api/openai_lightrag_server.py
Normal file
@@ -0,0 +1,369 @@
|
||||
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel
|
||||
import asyncio
|
||||
import os
|
||||
import logging
|
||||
import argparse
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from typing import Optional, List
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
import shutil
|
||||
import aiofiles
|
||||
from ascii_colors import ASCIIColors, trace_exception
|
||||
import numpy as np
|
||||
import nest_asyncio
|
||||
|
||||
# Apply nest_asyncio to solve event loop issues
|
||||
nest_asyncio.apply()
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="LightRAG FastAPI Server with OpenAI integration"
|
||||
)
|
||||
|
||||
# Server configuration
|
||||
parser.add_argument('--host', default='0.0.0.0', help='Server host (default: 0.0.0.0)')
|
||||
parser.add_argument('--port', type=int, default=9621, help='Server port (default: 9621)')
|
||||
|
||||
# Directory configuration
|
||||
parser.add_argument('--working-dir', default='./rag_storage',
|
||||
help='Working directory for RAG storage (default: ./rag_storage)')
|
||||
parser.add_argument('--input-dir', default='./inputs',
|
||||
help='Directory containing input documents (default: ./inputs)')
|
||||
|
||||
# Model configuration
|
||||
parser.add_argument('--model', default='gpt-4', help='OpenAI model name (default: gpt-4)')
|
||||
parser.add_argument('--embedding-model', default='text-embedding-3-large',
|
||||
help='OpenAI embedding model (default: text-embedding-3-large)')
|
||||
|
||||
# RAG configuration
|
||||
parser.add_argument('--max-tokens', type=int, default=32768, help='Maximum token size (default: 32768)')
|
||||
parser.add_argument('--max-embed-tokens', type=int, default=8192,
|
||||
help='Maximum embedding token size (default: 8192)')
|
||||
|
||||
# Logging configuration
|
||||
parser.add_argument('--log-level', default='INFO',
|
||||
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
|
||||
help='Logging level (default: INFO)')
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
class DocumentManager:
|
||||
"""Handles document operations and tracking"""
|
||||
|
||||
def __init__(self, input_dir: str, supported_extensions: tuple = ('.txt', '.md')):
|
||||
self.input_dir = Path(input_dir)
|
||||
self.supported_extensions = supported_extensions
|
||||
self.indexed_files = set()
|
||||
|
||||
# Create input directory if it doesn't exist
|
||||
self.input_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def scan_directory(self) -> List[Path]:
|
||||
"""Scan input directory for new files"""
|
||||
new_files = []
|
||||
for ext in self.supported_extensions:
|
||||
for file_path in self.input_dir.rglob(f'*{ext}'):
|
||||
if file_path not in self.indexed_files:
|
||||
new_files.append(file_path)
|
||||
return new_files
|
||||
|
||||
def mark_as_indexed(self, file_path: Path):
|
||||
"""Mark a file as indexed"""
|
||||
self.indexed_files.add(file_path)
|
||||
|
||||
def is_supported_file(self, filename: str) -> bool:
|
||||
"""Check if file type is supported"""
|
||||
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
||||
|
||||
# Pydantic models
|
||||
class SearchMode(str, Enum):
|
||||
naive = "naive"
|
||||
local = "local"
|
||||
global_ = "global"
|
||||
hybrid = "hybrid"
|
||||
|
||||
class QueryRequest(BaseModel):
|
||||
query: str
|
||||
mode: SearchMode = SearchMode.hybrid
|
||||
stream: bool = False
|
||||
|
||||
class QueryResponse(BaseModel):
|
||||
response: str
|
||||
|
||||
class InsertTextRequest(BaseModel):
|
||||
text: str
|
||||
description: Optional[str] = None
|
||||
|
||||
class InsertResponse(BaseModel):
|
||||
status: str
|
||||
message: str
|
||||
document_count: int
|
||||
|
||||
async def get_embedding_dim(embedding_model: str) -> int:
|
||||
"""Get embedding dimensions for the specified model"""
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await openai_embedding(test_text, model=embedding_model)
|
||||
return embedding.shape[1]
|
||||
|
||||
def create_app(args):
|
||||
# Setup logging
|
||||
logging.basicConfig(format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level))
|
||||
|
||||
# Initialize FastAPI app
|
||||
app = FastAPI(
|
||||
title="LightRAG API",
|
||||
description="API for querying text using LightRAG with OpenAI integration"
|
||||
)
|
||||
|
||||
# Create working directory if it doesn't exist
|
||||
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Initialize document manager
|
||||
doc_manager = DocumentManager(args.input_dir)
|
||||
|
||||
# Get embedding dimensions
|
||||
embedding_dim = asyncio.run(get_embedding_dim(args.embedding_model))
|
||||
|
||||
# Initialize RAG with OpenAI configuration
|
||||
rag = LightRAG(
|
||||
working_dir=args.working_dir,
|
||||
llm_model_func=async_openai_complete,
|
||||
llm_model_name=args.model,
|
||||
llm_model_max_token_size=args.max_tokens,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dim,
|
||||
max_token_size=args.max_embed_tokens,
|
||||
func=lambda texts: openai_embedding(texts, model=args.embedding_model),
|
||||
),
|
||||
)
|
||||
|
||||
async def async_openai_complete(prompt, system_prompt=None, history_messages=[], **kwargs):
|
||||
"""Async wrapper for OpenAI completion"""
|
||||
return await openai_complete_if_cache(
|
||||
args.model,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs
|
||||
)
|
||||
@app.on_event("startup")
|
||||
async def startup_event():
|
||||
"""Index all files in input directory during startup"""
|
||||
try:
|
||||
new_files = doc_manager.scan_directory()
|
||||
for file_path in new_files:
|
||||
try:
|
||||
# Use async file reading
|
||||
async with aiofiles.open(file_path, 'r', encoding='utf-8') as f:
|
||||
content = await f.read()
|
||||
# Use the async version of insert directly
|
||||
await rag.ainsert(content)
|
||||
doc_manager.mark_as_indexed(file_path)
|
||||
logging.info(f"Indexed file: {file_path}")
|
||||
except Exception as e:
|
||||
trace_exception(e)
|
||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||
|
||||
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
|
||||
|
||||
except Exception as e:
|
||||
logging.error(f"Error during startup indexing: {str(e)}")
|
||||
|
||||
@app.post("/documents/scan")
|
||||
async def scan_for_new_documents():
|
||||
"""Manually trigger scanning for new documents"""
|
||||
try:
|
||||
new_files = doc_manager.scan_directory()
|
||||
indexed_count = 0
|
||||
|
||||
for file_path in new_files:
|
||||
try:
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
content = f.read()
|
||||
rag.insert(content)
|
||||
doc_manager.mark_as_indexed(file_path)
|
||||
indexed_count += 1
|
||||
except Exception as e:
|
||||
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
||||
|
||||
return {
|
||||
"status": "success",
|
||||
"indexed_count": indexed_count,
|
||||
"total_documents": len(doc_manager.indexed_files)
|
||||
}
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/documents/upload")
|
||||
async def upload_to_input_dir(file: UploadFile = File(...)):
|
||||
"""Upload a file to the input directory"""
|
||||
try:
|
||||
if not doc_manager.is_supported_file(file.filename):
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}"
|
||||
)
|
||||
|
||||
file_path = doc_manager.input_dir / file.filename
|
||||
with open(file_path, "wb") as buffer:
|
||||
shutil.copyfileobj(file.file, buffer)
|
||||
|
||||
# Immediately index the uploaded file
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
content = f.read()
|
||||
rag.insert(content)
|
||||
doc_manager.mark_as_indexed(file_path)
|
||||
|
||||
return {
|
||||
"status": "success",
|
||||
"message": f"File uploaded and indexed: {file.filename}",
|
||||
"total_documents": len(doc_manager.indexed_files)
|
||||
}
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/query", response_model=QueryResponse)
|
||||
async def query_text(request: QueryRequest):
|
||||
try:
|
||||
response = await rag.aquery(
|
||||
request.query,
|
||||
param=QueryParam(mode=request.mode, stream=request.stream)
|
||||
)
|
||||
|
||||
if request.stream:
|
||||
result = ""
|
||||
async for chunk in response:
|
||||
result += chunk
|
||||
return QueryResponse(response=result)
|
||||
else:
|
||||
return QueryResponse(response=response)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/query/stream")
|
||||
async def query_text_stream(request: QueryRequest):
|
||||
try:
|
||||
response = rag.query(
|
||||
request.query,
|
||||
param=QueryParam(mode=request.mode, stream=True)
|
||||
)
|
||||
|
||||
async def stream_generator():
|
||||
async for chunk in response:
|
||||
yield chunk
|
||||
|
||||
return stream_generator()
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/documents/text", response_model=InsertResponse)
|
||||
async def insert_text(request: InsertTextRequest):
|
||||
try:
|
||||
rag.insert(request.text)
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="Text successfully inserted",
|
||||
document_count=len(rag)
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/documents/file", response_model=InsertResponse)
|
||||
async def insert_file(
|
||||
file: UploadFile = File(...),
|
||||
description: str = Form(None)
|
||||
):
|
||||
try:
|
||||
content = await file.read()
|
||||
|
||||
if file.filename.endswith(('.txt', '.md')):
|
||||
text = content.decode('utf-8')
|
||||
rag.insert(text)
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail="Unsupported file type. Only .txt and .md files are supported"
|
||||
)
|
||||
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message=f"File '{file.filename}' successfully inserted",
|
||||
document_count=len(rag)
|
||||
)
|
||||
except UnicodeDecodeError:
|
||||
raise HTTPException(status_code=400, detail="File encoding not supported")
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.post("/documents/batch", response_model=InsertResponse)
|
||||
async def insert_batch(files: List[UploadFile] = File(...)):
|
||||
try:
|
||||
inserted_count = 0
|
||||
failed_files = []
|
||||
|
||||
for file in files:
|
||||
try:
|
||||
content = await file.read()
|
||||
if file.filename.endswith(('.txt', '.md')):
|
||||
text = content.decode('utf-8')
|
||||
rag.insert(text)
|
||||
inserted_count += 1
|
||||
else:
|
||||
failed_files.append(f"{file.filename} (unsupported type)")
|
||||
except Exception as e:
|
||||
failed_files.append(f"{file.filename} ({str(e)})")
|
||||
|
||||
status_message = f"Successfully inserted {inserted_count} documents"
|
||||
if failed_files:
|
||||
status_message += f". Failed files: {', '.join(failed_files)}"
|
||||
|
||||
return InsertResponse(
|
||||
status="success" if inserted_count > 0 else "partial_success",
|
||||
message=status_message,
|
||||
document_count=len(rag)
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.delete("/documents", response_model=InsertResponse)
|
||||
async def clear_documents():
|
||||
try:
|
||||
rag.text_chunks = []
|
||||
rag.entities_vdb = None
|
||||
rag.relationships_vdb = None
|
||||
return InsertResponse(
|
||||
status="success",
|
||||
message="All documents cleared successfully",
|
||||
document_count=0
|
||||
)
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@app.get("/health")
|
||||
async def get_status():
|
||||
"""Get current system status"""
|
||||
return {
|
||||
"status": "healthy",
|
||||
"working_directory": str(args.working_dir),
|
||||
"input_directory": str(args.input_dir),
|
||||
"indexed_files": len(doc_manager.indexed_files),
|
||||
"configuration": {
|
||||
"model": args.model,
|
||||
"embedding_model": args.embedding_model,
|
||||
"max_tokens": args.max_tokens,
|
||||
"embedding_dim": embedding_dim
|
||||
}
|
||||
}
|
||||
|
||||
return app
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
import uvicorn
|
||||
app = create_app(args)
|
||||
uvicorn.run(app, host=args.host, port=args.port)
|
Reference in New Issue
Block a user