diff --git a/.env.example b/.env.example index 82b9ca70..6f868212 100644 --- a/.env.example +++ b/.env.example @@ -6,6 +6,17 @@ PORT=9621 WORKING_DIR=/app/data/rag_storage INPUT_DIR=/app/data/inputs +# RAG Configuration +MAX_ASYNC=4 +MAX_TOKENS=32768 +EMBEDDING_DIM=1024 +MAX_EMBED_TOKENS=8192 +#HISTORY_TURNS=3 +#CHUNK_SIZE=1200 +#CHUNK_OVERLAP_SIZE=100 +#COSINE_THRESHOLD=0.4 # 0.2 while not running API server +#TOP_K=50 # 60 while not running API server + # LLM Configuration (Use valid host. For local services, you can use host.docker.internal) # Ollama example LLM_BINDING=ollama @@ -38,15 +49,6 @@ EMBEDDING_MODEL=bge-m3:latest # EMBEDDING_BINDING_HOST=http://host.docker.internal:9600 # EMBEDDING_MODEL=bge-m3:latest -# RAG Configuration -MAX_ASYNC=4 -MAX_TOKENS=32768 -EMBEDDING_DIM=1024 -MAX_EMBED_TOKENS=8192 -#HISTORY_TURNS=3 -#CHUNK_SIZE=1200 -#CHUNK_OVERLAP_SIZE=100 - # Security (empty for no key) LIGHTRAG_API_KEY=your-secure-api-key-here diff --git a/README.md b/README.md index 6e8d6507..ad405e90 100644 --- a/README.md +++ b/README.md @@ -360,6 +360,8 @@ class QueryParam: max_token_for_local_context: int = 4000 ``` +> default value of Top_k can be change by environment variables TOP_K. + ### Batch Insert ```python @@ -730,10 +732,10 @@ if __name__ == "__main__": | **embedding\_func\_max\_async** | `int` | Maximum number of concurrent asynchronous embedding processes | `16` | | **llm\_model\_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` | | **llm\_model\_name** | `str` | LLM model name for generation | `meta-llama/Llama-3.2-1B-Instruct` | -| **llm\_model\_max\_token\_size** | `int` | Maximum token size for LLM generation (affects entity relation summaries) | `32768` | -| **llm\_model\_max\_async** | `int` | Maximum number of concurrent asynchronous LLM processes | `16` | +| **llm\_model\_max\_token\_size** | `int` | Maximum token size for LLM generation (affects entity relation summaries) | `32768`(default value changed by env var MAX_TOKENS) | +| **llm\_model\_max\_async** | `int` | Maximum number of concurrent asynchronous LLM processes | `16`(default value changed by env var MAX_ASYNC) | | **llm\_model\_kwargs** | `dict` | Additional parameters for LLM generation | | -| **vector\_db\_storage\_cls\_kwargs** | `dict` | Additional parameters for vector database (currently not used) | | +| **vector\_db\_storage\_cls\_kwargs** | `dict` | Additional parameters for vector database, like setting the threshold for nodes and relations retrieval. | cosine_better_than_threshold: 0.2(default value changed by env var COSINE_THRESHOLD) | | **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` | | **enable\_llm\_cache\_for\_entity\_extract** | `bool` | If `TRUE`, stores LLM results in cache for entity extraction; Good for beginners to debug your application | `TRUE` | | **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese", "entity_types": ["organization", "person", "geo", "event"], "insert_batch_size": 10}`: sets example limit, output language, and batch size for document processing | `example_number: all examples, language: English, insert_batch_size: 10` | @@ -741,6 +743,7 @@ if __name__ == "__main__": | **embedding\_cache\_config** | `dict` | Configuration for question-answer caching. Contains three parameters:
- `enabled`: Boolean value to enable/disable cache lookup functionality. When enabled, the system will check cached responses before generating new answers.
- `similarity_threshold`: Float value (0-1), similarity threshold. When a new question's similarity with a cached question exceeds this threshold, the cached answer will be returned directly without calling the LLM.
- `use_llm_check`: Boolean value to enable/disable LLM similarity verification. When enabled, LLM will be used as a secondary check to verify the similarity between questions before returning cached answers. | Default: `{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False}` | ### Error Handling +
Click to view error handling details diff --git a/lightrag/api/README.md b/lightrag/api/README.md index 4e818242..288ff79c 100644 --- a/lightrag/api/README.md +++ b/lightrag/api/README.md @@ -98,6 +98,8 @@ After starting the lightrag-server, you can add an Ollama-type connection in the LightRAG can be configured using either command-line arguments or environment variables. When both are provided, command-line arguments take precedence over environment variables. +For better performance, the API server's default values for TOP_K and COSINE_THRESHOLD are set to 50 and 0.4 respectively. If COSINE_THRESHOLD remains at its default value of 0.2 in LightRAG, many irrelevant entities and relations would be retrieved and sent to the LLM. + ### Environment Variables You can configure LightRAG using environment variables by creating a `.env` file in your project root directory. Here's a complete example of available environment variables: @@ -111,6 +113,17 @@ PORT=9621 WORKING_DIR=/app/data/rag_storage INPUT_DIR=/app/data/inputs +# RAG Configuration +MAX_ASYNC=4 +MAX_TOKENS=32768 +EMBEDDING_DIM=1024 +MAX_EMBED_TOKENS=8192 +#HISTORY_TURNS=3 +#CHUNK_SIZE=1200 +#CHUNK_OVERLAP_SIZE=100 +#COSINE_THRESHOLD=0.4 +#TOP_K=50 + # LLM Configuration LLM_BINDING=ollama LLM_BINDING_HOST=http://localhost:11434 @@ -124,14 +137,8 @@ EMBEDDING_BINDING=ollama EMBEDDING_BINDING_HOST=http://localhost:11434 EMBEDDING_MODEL=bge-m3:latest -# RAG Configuration -MAX_ASYNC=4 -MAX_TOKENS=32768 -EMBEDDING_DIM=1024 -MAX_EMBED_TOKENS=8192 - # Security -LIGHTRAG_API_KEY= +#LIGHTRAG_API_KEY=you-api-key-for-accessing-LightRAG # Logging LOG_LEVEL=INFO @@ -186,10 +193,9 @@ PORT=7000 python lightrag.py | --ssl | False | Enable HTTPS | | --ssl-certfile | None | Path to SSL certificate file (required if --ssl is enabled) | | --ssl-keyfile | None | Path to SSL private key file (required if --ssl is enabled) | +| --top-k | 50 | Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode. | +| --cosine-threshold | 0.4 | The cossine threshold for nodes and relations retrieval, works with top-k to control the retrieval of nodes and relations. | - - -For protecting the server using an authentication key, you can also use an environment variable named `LIGHTRAG_API_KEY`. ### Example Usage #### Running a Lightrag server with ollama default local server as llm and embedding backends diff --git a/lightrag/api/lightrag_server.py b/lightrag/api/lightrag_server.py index d9edc351..e162f5ec 100644 --- a/lightrag/api/lightrag_server.py +++ b/lightrag/api/lightrag_server.py @@ -212,8 +212,12 @@ def display_splash_screen(args: argparse.Namespace) -> None: ASCIIColors.yellow(f"{args.chunk_size}") ASCIIColors.white(" ├─ Chunk Overlap Size: ", end="") ASCIIColors.yellow(f"{args.chunk_overlap_size}") - ASCIIColors.white(" └─ History Turns: ", end="") + ASCIIColors.white(" ├─ History Turns: ", end="") ASCIIColors.yellow(f"{args.history_turns}") + ASCIIColors.white(" ├─ Cosine Threshold: ", end="") + ASCIIColors.yellow(f"{args.cosine_threshold}") + ASCIIColors.white(" └─ Top-K: ", end="") + ASCIIColors.yellow(f"{args.top_k}") # System Configuration ASCIIColors.magenta("\n🛠️ System Configuration:") @@ -489,6 +493,20 @@ def parse_args() -> argparse.Namespace: help="Number of conversation history turns to include (default: from env or 3)", ) + # Search parameters + parser.add_argument( + "--top-k", + type=int, + default=get_env_value("TOP_K", 50, int), + help="Number of most similar results to return (default: from env or 50)", + ) + parser.add_argument( + "--cosine-threshold", + type=float, + default=get_env_value("COSINE_THRESHOLD", 0.4, float), + help="Cosine similarity threshold (default: from env or 0.4)", + ) + parser.add_argument( "--simulated-model-name", type=str, @@ -862,6 +880,9 @@ def create_app(args): graph_storage=ollama_server_infos.GRAPH_STORAGE, vector_storage=ollama_server_infos.VECTOR_STORAGE, doc_status_storage=ollama_server_infos.DOC_STATUS_STORAGE, + vector_db_storage_cls_kwargs={ + "cosine_better_than_threshold": args.cosine_threshold + }, ) else: rag = LightRAG( @@ -871,6 +892,9 @@ def create_app(args): else openai_alike_model_complete, chunk_token_size=int(args.chunk_size), chunk_overlap_token_size=int(args.chunk_overlap_size), + llm_model_kwargs={ + "timeout": args.timeout, + }, llm_model_name=args.llm_model, llm_model_max_async=args.max_async, llm_model_max_token_size=args.max_tokens, @@ -879,6 +903,9 @@ def create_app(args): graph_storage=ollama_server_infos.GRAPH_STORAGE, vector_storage=ollama_server_infos.VECTOR_STORAGE, doc_status_storage=ollama_server_infos.DOC_STATUS_STORAGE, + vector_db_storage_cls_kwargs={ + "cosine_better_than_threshold": args.cosine_threshold + }, ) async def index_file(file_path: Union[str, Path]) -> None: @@ -1068,6 +1095,7 @@ def create_app(args): mode=request.mode, stream=request.stream, only_need_context=request.only_need_context, + top_k=args.top_k, ), ) @@ -1109,6 +1137,7 @@ def create_app(args): mode=request.mode, stream=True, only_need_context=request.only_need_context, + top_k=args.top_k, ), ) @@ -1648,6 +1677,7 @@ def create_app(args): "stream": request.stream, "only_need_context": False, "conversation_history": conversation_history, + "top_k": args.top_k, } if args.history_turns is not None: diff --git a/lightrag/base.py b/lightrag/base.py index 36e70893..e71cac3f 100644 --- a/lightrag/base.py +++ b/lightrag/base.py @@ -1,3 +1,4 @@ +import os from dataclasses import dataclass, field from typing import ( TypedDict, @@ -32,7 +33,7 @@ class QueryParam: response_type: str = "Multiple Paragraphs" stream: bool = False # Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode. - top_k: int = 60 + top_k: int = int(os.getenv("TOP_K", "60")) # Number of document chunks to retrieve. # top_n: int = 10 # Number of tokens for the original chunks. diff --git a/lightrag/kg/chroma_impl.py b/lightrag/kg/chroma_impl.py index 200e780c..72a2627a 100644 --- a/lightrag/kg/chroma_impl.py +++ b/lightrag/kg/chroma_impl.py @@ -1,3 +1,4 @@ +import os import asyncio from dataclasses import dataclass from typing import Union @@ -12,16 +13,16 @@ from lightrag.utils import logger class ChromaVectorDBStorage(BaseVectorStorage): """ChromaDB vector storage implementation.""" - cosine_better_than_threshold: float = 0.2 + cosine_better_than_threshold: float = float(os.getenv("COSINE_THRESHOLD", "0.2")) def __post_init__(self): try: # Use global config value if specified, otherwise use default - self.cosine_better_than_threshold = self.global_config.get( + config = self.global_config.get("vector_db_storage_cls_kwargs", {}) + self.cosine_better_than_threshold = config.get( "cosine_better_than_threshold", self.cosine_better_than_threshold ) - config = self.global_config.get("vector_db_storage_cls_kwargs", {}) user_collection_settings = config.get("collection_settings", {}) # Default HNSW index settings for ChromaDB default_collection_settings = { diff --git a/lightrag/kg/nano_vector_db_impl.py b/lightrag/kg/nano_vector_db_impl.py index aa23e811..ed272fee 100644 --- a/lightrag/kg/nano_vector_db_impl.py +++ b/lightrag/kg/nano_vector_db_impl.py @@ -73,9 +73,15 @@ from lightrag.base import ( @dataclass class NanoVectorDBStorage(BaseVectorStorage): - cosine_better_than_threshold: float = 0.2 + cosine_better_than_threshold: float = float(os.getenv("COSINE_THRESHOLD", "0.2")) def __post_init__(self): + # Use global config value if specified, otherwise use default + config = self.global_config.get("vector_db_storage_cls_kwargs", {}) + self.cosine_better_than_threshold = config.get( + "cosine_better_than_threshold", self.cosine_better_than_threshold + ) + self._client_file_name = os.path.join( self.global_config["working_dir"], f"vdb_{self.namespace}.json" ) @@ -83,9 +89,6 @@ class NanoVectorDBStorage(BaseVectorStorage): self._client = NanoVectorDB( self.embedding_func.embedding_dim, storage_file=self._client_file_name ) - self.cosine_better_than_threshold = self.global_config.get( - "cosine_better_than_threshold", self.cosine_better_than_threshold - ) async def upsert(self, data: dict[str, dict]): logger.info(f"Inserting {len(data)} vectors to {self.namespace}") @@ -134,6 +137,9 @@ class NanoVectorDBStorage(BaseVectorStorage): async def query(self, query: str, top_k=5): embedding = await self.embedding_func([query]) embedding = embedding[0] + logger.info( + f"Query: {query}, top_k: {top_k}, cosine_better_than_threshold: {self.cosine_better_than_threshold}" + ) results = self._client.query( query=embedding, top_k=top_k, diff --git a/lightrag/kg/oracle_impl.py b/lightrag/kg/oracle_impl.py index 2d1f631c..368e8618 100644 --- a/lightrag/kg/oracle_impl.py +++ b/lightrag/kg/oracle_impl.py @@ -1,3 +1,4 @@ +import os import asyncio # import html @@ -341,10 +342,14 @@ class OracleKVStorage(BaseKVStorage): class OracleVectorDBStorage(BaseVectorStorage): # should pass db object to self.db db: OracleDB = None - cosine_better_than_threshold: float = 0.2 + cosine_better_than_threshold: float = float(os.getenv("COSINE_THRESHOLD", "0.2")) def __post_init__(self): - pass + # Use global config value if specified, otherwise use default + config = self.global_config.get("vector_db_storage_cls_kwargs", {}) + self.cosine_better_than_threshold = config.get( + "cosine_better_than_threshold", self.cosine_better_than_threshold + ) async def upsert(self, data: dict[str, dict]): """向向量数据库中插入数据""" diff --git a/lightrag/kg/postgres_impl.py b/lightrag/kg/postgres_impl.py index 57fe8d8d..b315abca 100644 --- a/lightrag/kg/postgres_impl.py +++ b/lightrag/kg/postgres_impl.py @@ -301,12 +301,14 @@ class PGKVStorage(BaseKVStorage): @dataclass class PGVectorStorage(BaseVectorStorage): - cosine_better_than_threshold: float = 0.2 + cosine_better_than_threshold: float = float(os.getenv("COSINE_THRESHOLD", "0.2")) db: PostgreSQLDB = None def __post_init__(self): self._max_batch_size = self.global_config["embedding_batch_num"] - self.cosine_better_than_threshold = self.global_config.get( + # Use global config value if specified, otherwise use default + config = self.global_config.get("vector_db_storage_cls_kwargs", {}) + self.cosine_better_than_threshold = config.get( "cosine_better_than_threshold", self.cosine_better_than_threshold ) diff --git a/lightrag/kg/tidb_impl.py b/lightrag/kg/tidb_impl.py index d76c2c99..0579a57c 100644 --- a/lightrag/kg/tidb_impl.py +++ b/lightrag/kg/tidb_impl.py @@ -217,14 +217,16 @@ class TiDBKVStorage(BaseKVStorage): @dataclass class TiDBVectorDBStorage(BaseVectorStorage): - cosine_better_than_threshold: float = 0.2 + cosine_better_than_threshold: float = float(os.getenv("COSINE_THRESHOLD", "0.2")) def __post_init__(self): self._client_file_name = os.path.join( self.global_config["working_dir"], f"vdb_{self.namespace}.json" ) self._max_batch_size = self.global_config["embedding_batch_num"] - self.cosine_better_than_threshold = self.global_config.get( + # Use global config value if specified, otherwise use default + config = self.global_config.get("vector_db_storage_cls_kwargs", {}) + self.cosine_better_than_threshold = config.get( "cosine_better_than_threshold", self.cosine_better_than_threshold ) diff --git a/lightrag/lightrag.py b/lightrag/lightrag.py index acad9295..92fc954f 100644 --- a/lightrag/lightrag.py +++ b/lightrag/lightrag.py @@ -158,8 +158,8 @@ class LightRAG: # LLM llm_model_func: callable = None # This must be set (we do want to separate llm from the corte, so no more default initialization) llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" # 'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it' - llm_model_max_token_size: int = 32768 - llm_model_max_async: int = 16 + llm_model_max_token_size: int = int(os.getenv("MAX_TOKENS", "32768")) + llm_model_max_async: int = int(os.getenv("MAX_ASYNC", "16")) llm_model_kwargs: dict = field(default_factory=dict) # storage diff --git a/lightrag/operate.py b/lightrag/operate.py index 6756a40c..fbcb6c7c 100644 --- a/lightrag/operate.py +++ b/lightrag/operate.py @@ -590,8 +590,8 @@ async def kg_query( query, query_param, global_config, hashing_kv ) - logger.info(f"High-level keywords: {hl_keywords}") - logger.info(f"Low-level keywords: {ll_keywords}") + logger.debug(f"High-level keywords: {hl_keywords}") + logger.debug(f"Low-level keywords: {ll_keywords}") # Handle empty keywords if hl_keywords == [] and ll_keywords == []: @@ -1026,6 +1026,10 @@ async def _build_query_context( [hl_relations_context, ll_relations_context], [hl_text_units_context, ll_text_units_context], ) + # not necessary to use LLM to generate a response + if not entities_context.strip() and not relations_context.strip(): + return None + return f""" -----Entities----- ```csv