Remove unused node embedding functionality from graph storage
- Deleted embed_nodes() method implementations
This commit is contained in:
@@ -6,7 +6,6 @@ import sys
|
||||
from contextlib import asynccontextmanager
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Union, final
|
||||
import numpy as np
|
||||
import pipmaster as pm
|
||||
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
|
||||
@@ -668,21 +667,6 @@ class AGEStorage(BaseGraphStorage):
|
||||
logger.error(f"Error during edge deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
"""Embed nodes using the specified algorithm
|
||||
|
||||
Args:
|
||||
algorithm: Name of the embedding algorithm
|
||||
|
||||
Returns:
|
||||
tuple: (embedding matrix, list of node identifiers)
|
||||
"""
|
||||
if algorithm not in self._node_embed_algorithms:
|
||||
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||||
return await self._node_embed_algorithms[algorithm]()
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
"""Get all node labels in the database
|
||||
|
||||
|
@@ -6,9 +6,6 @@ import pipmaster as pm
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, final
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
from tenacity import (
|
||||
retry,
|
||||
retry_if_exception_type,
|
||||
@@ -419,27 +416,6 @@ class GremlinStorage(BaseGraphStorage):
|
||||
logger.error(f"Error during node deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
"""
|
||||
Embed nodes using the specified algorithm.
|
||||
Currently, only node2vec is supported but never called.
|
||||
|
||||
Args:
|
||||
algorithm: The name of the embedding algorithm to use
|
||||
|
||||
Returns:
|
||||
A tuple of (embeddings, node_ids)
|
||||
|
||||
Raises:
|
||||
NotImplementedError: If the specified algorithm is not supported
|
||||
ValueError: If the algorithm is not supported
|
||||
"""
|
||||
if algorithm not in self._node_embed_algorithms:
|
||||
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||||
return await self._node_embed_algorithms[algorithm]()
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
"""
|
||||
Get all node entity_names in the graph
|
||||
|
@@ -663,20 +663,6 @@ class MongoGraphStorage(BaseGraphStorage):
|
||||
# Remove the node doc
|
||||
await self.collection.delete_one({"_id": node_id})
|
||||
|
||||
#
|
||||
# -------------------------------------------------------------------------
|
||||
# EMBEDDINGS (NOT IMPLEMENTED)
|
||||
# -------------------------------------------------------------------------
|
||||
#
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
"""
|
||||
Placeholder for demonstration, raises NotImplementedError.
|
||||
"""
|
||||
raise NotImplementedError("Node embedding is not used in lightrag.")
|
||||
|
||||
#
|
||||
# -------------------------------------------------------------------------
|
||||
# QUERY
|
||||
|
@@ -2,8 +2,7 @@ import inspect
|
||||
import os
|
||||
import re
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, final
|
||||
import numpy as np
|
||||
from typing import final
|
||||
import configparser
|
||||
|
||||
|
||||
@@ -1126,11 +1125,6 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
logger.error(f"Error during edge deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all data from storage and clean up resources
|
||||
|
||||
|
@@ -1,7 +1,6 @@
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, final
|
||||
import numpy as np
|
||||
from typing import final
|
||||
|
||||
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
from lightrag.utils import logger
|
||||
@@ -16,7 +15,6 @@ if not pm.is_installed("graspologic"):
|
||||
pm.install("graspologic")
|
||||
|
||||
import networkx as nx
|
||||
from graspologic import embed
|
||||
from .shared_storage import (
|
||||
get_storage_lock,
|
||||
get_update_flag,
|
||||
@@ -42,40 +40,6 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
)
|
||||
nx.write_graphml(graph, file_name)
|
||||
|
||||
# TODO:deprecated, remove later
|
||||
@staticmethod
|
||||
def _stabilize_graph(graph: nx.Graph) -> nx.Graph:
|
||||
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
|
||||
Ensure an undirected graph with the same relationships will always be read the same way.
|
||||
"""
|
||||
fixed_graph = nx.DiGraph() if graph.is_directed() else nx.Graph()
|
||||
|
||||
sorted_nodes = graph.nodes(data=True)
|
||||
sorted_nodes = sorted(sorted_nodes, key=lambda x: x[0])
|
||||
|
||||
fixed_graph.add_nodes_from(sorted_nodes)
|
||||
edges = list(graph.edges(data=True))
|
||||
|
||||
if not graph.is_directed():
|
||||
|
||||
def _sort_source_target(edge):
|
||||
source, target, edge_data = edge
|
||||
if source > target:
|
||||
temp = source
|
||||
source = target
|
||||
target = temp
|
||||
return source, target, edge_data
|
||||
|
||||
edges = [_sort_source_target(edge) for edge in edges]
|
||||
|
||||
def _get_edge_key(source: Any, target: Any) -> str:
|
||||
return f"{source} -> {target}"
|
||||
|
||||
edges = sorted(edges, key=lambda x: _get_edge_key(x[0], x[1]))
|
||||
|
||||
fixed_graph.add_edges_from(edges)
|
||||
return fixed_graph
|
||||
|
||||
def __post_init__(self):
|
||||
self._graphml_xml_file = os.path.join(
|
||||
self.global_config["working_dir"], f"graph_{self.namespace}.graphml"
|
||||
@@ -191,24 +155,6 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
else:
|
||||
logger.warning(f"Node {node_id} not found in the graph for deletion.")
|
||||
|
||||
# TODO: NOT USED
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
if algorithm not in self._node_embed_algorithms:
|
||||
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||||
return await self._node_embed_algorithms[algorithm]()
|
||||
|
||||
# TODO: NOT USED
|
||||
async def _node2vec_embed(self):
|
||||
graph = await self._get_graph()
|
||||
embeddings, nodes = embed.node2vec_embed(
|
||||
graph,
|
||||
**self.global_config["node2vec_params"],
|
||||
)
|
||||
nodes_ids = [graph.nodes[node_id]["id"] for node_id in nodes]
|
||||
return embeddings, nodes_ids
|
||||
|
||||
async def remove_nodes(self, nodes: list[str]):
|
||||
"""Delete multiple nodes
|
||||
|
||||
|
@@ -1485,24 +1485,6 @@ class PGGraphStorage(BaseGraphStorage):
|
||||
labels = [result["label"] for result in results]
|
||||
return labels
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
"""
|
||||
Generate node embeddings using the specified algorithm.
|
||||
|
||||
Args:
|
||||
algorithm (str): The name of the embedding algorithm to use.
|
||||
|
||||
Returns:
|
||||
tuple[np.ndarray[Any, Any], list[str]]: A tuple containing the embeddings and the corresponding node IDs.
|
||||
"""
|
||||
if algorithm not in self._node_embed_algorithms:
|
||||
raise ValueError(f"Unsupported embedding algorithm: {algorithm}")
|
||||
|
||||
embed_func = self._node_embed_algorithms[algorithm]
|
||||
return await embed_func()
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self,
|
||||
node_label: str,
|
||||
|
@@ -800,13 +800,6 @@ class TiDBGraphStorage(BaseGraphStorage):
|
||||
}
|
||||
await self.db.execute(merge_sql, data)
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
if algorithm not in self._node_embed_algorithms:
|
||||
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
||||
return await self._node_embed_algorithms[algorithm]()
|
||||
|
||||
# Query
|
||||
|
||||
async def has_node(self, node_id: str) -> bool:
|
||||
|
Reference in New Issue
Block a user