集中处理环境变量
This commit is contained in:
@@ -18,6 +18,13 @@ app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
||||
# Configure working directory
|
||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
|
||||
print(f"LLM_MODEL: {LLM_MODEL}")
|
||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
||||
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
@@ -29,7 +36,7 @@ async def llm_model_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await openai_complete_if_cache(
|
||||
os.environ.get("LLM_MODEL", "gpt-4o-mini"),
|
||||
LLM_MODEL,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
@@ -43,7 +50,7 @@ async def llm_model_func(
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model=os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large"),
|
||||
model=EMBEDDING_MODEL,
|
||||
)
|
||||
|
||||
|
||||
@@ -60,7 +67,7 @@ rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192),
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func),
|
||||
)
|
||||
|
||||
|
Reference in New Issue
Block a user