update Oracle support
add cache support, fix bug
This commit is contained in:
@@ -20,7 +20,8 @@ BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/"
|
||||
APIKEY = "ocigenerativeai"
|
||||
CHATMODEL = "cohere.command-r-plus"
|
||||
EMBEDMODEL = "cohere.embed-multilingual-v3.0"
|
||||
|
||||
CHUNK_TOKEN_SIZE = 1024
|
||||
MAX_TOKENS = 4000
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
@@ -86,25 +87,47 @@ async def main():
|
||||
# We use Oracle DB as the KV/vector/graph storage
|
||||
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
||||
rag = LightRAG(
|
||||
enable_llm_cache=False,
|
||||
working_dir=WORKING_DIR,
|
||||
chunk_token_size=512,
|
||||
entity_extract_max_gleaning = 1,
|
||||
|
||||
enable_llm_cache=False,
|
||||
embedding_cache_config= None, # {"enabled": True,"similarity_threshold": 0.90},
|
||||
enable_llm_cache_for_entity_extract = True,
|
||||
|
||||
chunk_token_size=CHUNK_TOKEN_SIZE,
|
||||
llm_model_max_token_size = MAX_TOKENS,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=512,
|
||||
max_token_size=500,
|
||||
func=embedding_func,
|
||||
),
|
||||
graph_storage="OracleGraphStorage",
|
||||
kv_storage="OracleKVStorage",
|
||||
),
|
||||
|
||||
graph_storage = "OracleGraphStorage",
|
||||
kv_storage = "OracleKVStorage",
|
||||
vector_storage="OracleVectorDBStorage",
|
||||
doc_status_storage="OracleDocStatusStorage",
|
||||
|
||||
addon_params = {"example_number":1, "language":"Simplfied Chinese"},
|
||||
)
|
||||
|
||||
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
||||
rag.graph_storage_cls.db = oracle_db
|
||||
rag.key_string_value_json_storage_cls.db = oracle_db
|
||||
rag.vector_db_storage_cls.db = oracle_db
|
||||
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
||||
rag.graph_storage_cls.db = oracle_db
|
||||
rag.doc_status_storage_cls.db = oracle_db
|
||||
rag.doc_status.db = oracle_db
|
||||
rag.full_docs.db = oracle_db
|
||||
rag.text_chunks.db = oracle_db
|
||||
rag.llm_response_cache.db = oracle_db
|
||||
rag.key_string_value_json_storage_cls.db = oracle_db
|
||||
rag.chunks_vdb.db = oracle_db
|
||||
rag.relationships_vdb.db = oracle_db
|
||||
rag.entities_vdb.db = oracle_db
|
||||
rag.graph_storage_cls.db = oracle_db
|
||||
rag.chunk_entity_relation_graph.db = oracle_db
|
||||
rag.llm_response_cache.db = oracle_db
|
||||
|
||||
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
||||
|
||||
# Extract and Insert into LightRAG storage
|
||||
|
@@ -3,7 +3,7 @@ import asyncio
|
||||
# import html
|
||||
# import os
|
||||
from dataclasses import dataclass
|
||||
from typing import Union
|
||||
from typing import Union, List, Dict, Set, Any, Tuple
|
||||
import numpy as np
|
||||
import array
|
||||
|
||||
@@ -12,6 +12,9 @@ from ..base import (
|
||||
BaseGraphStorage,
|
||||
BaseKVStorage,
|
||||
BaseVectorStorage,
|
||||
DocStatusStorage,
|
||||
DocStatus,
|
||||
DocProcessingStatus,
|
||||
)
|
||||
|
||||
import oracledb
|
||||
@@ -167,6 +170,9 @@ class OracleDB:
|
||||
@dataclass
|
||||
class OracleKVStorage(BaseKVStorage):
|
||||
# should pass db object to self.db
|
||||
db: OracleDB = None
|
||||
meta_fields = None
|
||||
|
||||
def __post_init__(self):
|
||||
self._data = {}
|
||||
self._max_batch_size = self.global_config["embedding_batch_num"]
|
||||
@@ -174,28 +180,56 @@ class OracleKVStorage(BaseKVStorage):
|
||||
################ QUERY METHODS ################
|
||||
|
||||
async def get_by_id(self, id: str) -> Union[dict, None]:
|
||||
"""根据 id 获取 doc_full 数据."""
|
||||
"""get doc_full data based on id."""
|
||||
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
||||
params = {"workspace": self.db.workspace, "id": id}
|
||||
# print("get_by_id:"+SQL)
|
||||
res = await self.db.query(SQL, params)
|
||||
if "llm_response_cache" == self.namespace:
|
||||
array_res = await self.db.query(SQL, params, multirows=True)
|
||||
res = {}
|
||||
for row in array_res:
|
||||
res[row["id"]] = row
|
||||
else:
|
||||
res = await self.db.query(SQL, params)
|
||||
if res:
|
||||
data = res # {"data":res}
|
||||
# print (data)
|
||||
return data
|
||||
return res
|
||||
else:
|
||||
return None
|
||||
|
||||
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
|
||||
"""Specifically for llm_response_cache."""
|
||||
SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
||||
params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
|
||||
if "llm_response_cache" == self.namespace:
|
||||
array_res = await self.db.query(SQL, params, multirows=True)
|
||||
res = {}
|
||||
for row in array_res:
|
||||
res[row["id"]] = row
|
||||
return res
|
||||
else:
|
||||
return None
|
||||
|
||||
# Query by id
|
||||
async def get_by_ids(self, ids: list[str], fields=None) -> Union[list[dict], None]:
|
||||
"""根据 id 获取 doc_chunks 数据"""
|
||||
"""get doc_chunks data based on id"""
|
||||
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
|
||||
ids=",".join([f"'{id}'" for id in ids])
|
||||
)
|
||||
params = {"workspace": self.db.workspace}
|
||||
# print("get_by_ids:"+SQL)
|
||||
# print(params)
|
||||
res = await self.db.query(SQL, params, multirows=True)
|
||||
if "llm_response_cache" == self.namespace:
|
||||
modes = set()
|
||||
dict_res: dict[str, dict] = {}
|
||||
for row in res:
|
||||
modes.add(row["mode"])
|
||||
for mode in modes:
|
||||
if mode not in dict_res:
|
||||
dict_res[mode] = {}
|
||||
for row in res:
|
||||
dict_res[row["mode"]][row["id"]] = row
|
||||
res = [{k: v} for k, v in dict_res.items()]
|
||||
|
||||
if res:
|
||||
data = res # [{"data":i} for i in res]
|
||||
# print(data)
|
||||
@@ -204,7 +238,7 @@ class OracleKVStorage(BaseKVStorage):
|
||||
return None
|
||||
|
||||
async def filter_keys(self, keys: list[str]) -> set[str]:
|
||||
"""过滤掉重复内容"""
|
||||
"""remove duplicated"""
|
||||
SQL = SQL_TEMPLATES["filter_keys"].format(
|
||||
table_name=N_T[self.namespace], ids=",".join([f"'{id}'" for id in keys])
|
||||
)
|
||||
@@ -271,13 +305,26 @@ class OracleKVStorage(BaseKVStorage):
|
||||
# values.clear()
|
||||
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
||||
data = {
|
||||
"check_id": k,
|
||||
"id": k,
|
||||
"content": v["content"],
|
||||
"workspace": self.db.workspace,
|
||||
}
|
||||
# print(merge_sql)
|
||||
await self.db.execute(merge_sql, data)
|
||||
|
||||
if self.namespace == "llm_response_cache":
|
||||
for mode, items in data.items():
|
||||
for k, v in items.items():
|
||||
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
||||
_data = {
|
||||
"workspace": self.db.workspace,
|
||||
"id": k,
|
||||
"original_prompt": v["original_prompt"],
|
||||
"return_value": v["return"],
|
||||
"cache_mode": mode,
|
||||
}
|
||||
|
||||
await self.db.execute(upsert_sql, _data)
|
||||
return left_data
|
||||
|
||||
async def index_done_callback(self):
|
||||
@@ -285,8 +332,99 @@ class OracleKVStorage(BaseKVStorage):
|
||||
logger.info("full doc and chunk data had been saved into oracle db!")
|
||||
|
||||
|
||||
@dataclass
|
||||
class OracleDocStatusStorage(DocStatusStorage):
|
||||
"""Oracle implementation of document status storage"""
|
||||
# should pass db object to self.db
|
||||
db: OracleDB = None
|
||||
meta_fields = None
|
||||
|
||||
def __post_init__(self):
|
||||
pass
|
||||
|
||||
async def filter_keys(self, ids: list[str]) -> set[str]:
|
||||
"""Return keys that don't exist in storage"""
|
||||
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace].format(
|
||||
ids = ",".join([f"'{id}'" for id in ids])
|
||||
)
|
||||
params = {"workspace": self.db.workspace}
|
||||
res = await self.db.query(SQL, params, True)
|
||||
# The result is like [{'id': 'id1'}, {'id': 'id2'}, ...].
|
||||
if res:
|
||||
existed = set([element["id"] for element in res])
|
||||
return set(ids) - existed
|
||||
else:
|
||||
return set(ids)
|
||||
|
||||
async def get_status_counts(self) -> Dict[str, int]:
|
||||
"""Get counts of documents in each status"""
|
||||
SQL = SQL_TEMPLATES["get_status_counts"]
|
||||
params = {"workspace": self.db.workspace}
|
||||
res = await self.db.query(SQL, params, True)
|
||||
# Result is like [{'status': 'PENDING', 'count': 1}, {'status': 'PROCESSING', 'count': 2}, ...]
|
||||
counts = {}
|
||||
for doc in res:
|
||||
counts[doc["status"]] = doc["count"]
|
||||
return counts
|
||||
|
||||
async def get_docs_by_status(self, status: DocStatus) -> Dict[str, DocProcessingStatus]:
|
||||
"""Get all documents by status"""
|
||||
SQL = SQL_TEMPLATES["get_docs_by_status"]
|
||||
params = {"workspace": self.db.workspace, "status": status}
|
||||
res = await self.db.query(SQL, params, True)
|
||||
# Result is like [{'id': 'id1', 'status': 'PENDING', 'updated_at': '2023-07-01 00:00:00'}, {'id': 'id2', 'status': 'PENDING', 'updated_at': '2023-07-01 00:00:00'}, ...]
|
||||
# Converting to be a dict
|
||||
return {
|
||||
element["id"]: DocProcessingStatus(
|
||||
#content_summary=element["content_summary"],
|
||||
content_summary = "",
|
||||
content_length=element["CONTENT_LENGTH"],
|
||||
status=element["STATUS"],
|
||||
created_at=element["CREATETIME"],
|
||||
updated_at=element["UPDATETIME"],
|
||||
chunks_count=-1,
|
||||
#chunks_count=element["chunks_count"],
|
||||
)
|
||||
for element in res
|
||||
}
|
||||
|
||||
async def get_failed_docs(self) -> Dict[str, DocProcessingStatus]:
|
||||
"""Get all failed documents"""
|
||||
return await self.get_docs_by_status(DocStatus.FAILED)
|
||||
|
||||
async def get_pending_docs(self) -> Dict[str, DocProcessingStatus]:
|
||||
"""Get all pending documents"""
|
||||
return await self.get_docs_by_status(DocStatus.PENDING)
|
||||
|
||||
async def index_done_callback(self):
|
||||
"""Save data after indexing, but for ORACLE, we already saved them during the upsert stage, so no action to take here"""
|
||||
logger.info("Doc status had been saved into ORACLE db!")
|
||||
|
||||
async def upsert(self, data: dict[str, dict]):
|
||||
"""Update or insert document status
|
||||
|
||||
Args:
|
||||
data: Dictionary of document IDs and their status data
|
||||
"""
|
||||
SQL = SQL_TEMPLATES["merge_doc_status"]
|
||||
for k, v in data.items():
|
||||
# chunks_count is optional
|
||||
params = {
|
||||
"workspace": self.db.workspace,
|
||||
"id": k,
|
||||
"content_summary": v["content_summary"],
|
||||
"content_length": v["content_length"],
|
||||
"chunks_count": v["chunks_count"] if "chunks_count" in v else -1,
|
||||
"status": v["status"],
|
||||
}
|
||||
await self.db.execute(SQL, params)
|
||||
return data
|
||||
|
||||
|
||||
@dataclass
|
||||
class OracleVectorDBStorage(BaseVectorStorage):
|
||||
# should pass db object to self.db
|
||||
db: OracleDB = None
|
||||
cosine_better_than_threshold: float = 0.2
|
||||
|
||||
def __post_init__(self):
|
||||
@@ -564,13 +702,18 @@ N_T = {
|
||||
TABLES = {
|
||||
"LIGHTRAG_DOC_FULL": {
|
||||
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
||||
id varchar(256)PRIMARY KEY,
|
||||
id varchar(256),
|
||||
workspace varchar(1024),
|
||||
doc_name varchar(1024),
|
||||
content CLOB,
|
||||
meta JSON,
|
||||
content_summary varchar(1024),
|
||||
content_length NUMBER,
|
||||
status varchar(256),
|
||||
chunks_count NUMBER,
|
||||
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
updatetime TIMESTAMP DEFAULT NULL
|
||||
updatetime TIMESTAMP DEFAULT NULL,
|
||||
error varchar(4096)
|
||||
)"""
|
||||
},
|
||||
"LIGHTRAG_DOC_CHUNKS": {
|
||||
@@ -619,9 +762,15 @@ TABLES = {
|
||||
"LIGHTRAG_LLM_CACHE": {
|
||||
"ddl": """CREATE TABLE LIGHTRAG_LLM_CACHE (
|
||||
id varchar(256) PRIMARY KEY,
|
||||
send clob,
|
||||
return clob,
|
||||
model varchar(1024),
|
||||
workspace varchar(1024),
|
||||
cache_mode varchar(256),
|
||||
model_name varchar(256),
|
||||
original_prompt clob,
|
||||
return_value clob,
|
||||
embedding CLOB,
|
||||
embedding_shape NUMBER,
|
||||
embedding_min NUMBER,
|
||||
embedding_max NUMBER,
|
||||
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
||||
updatetime TIMESTAMP DEFAULT NULL
|
||||
)"""
|
||||
@@ -647,22 +796,70 @@ TABLES = {
|
||||
SQL_TEMPLATES = {
|
||||
# SQL for KVStorage
|
||||
"get_by_id_full_docs": "select ID,NVL(content,'') as content from LIGHTRAG_DOC_FULL where workspace=:workspace and ID=:id",
|
||||
|
||||
"get_by_id_text_chunks": "select ID,TOKENS,NVL(content,'') as content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID=:id",
|
||||
|
||||
"get_by_id_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
||||
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id=:id""",
|
||||
|
||||
"get_by_mode_id_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
||||
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND cache_mode=:cache_mode AND id=:id""",
|
||||
|
||||
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
||||
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id IN ({ids})""",
|
||||
|
||||
"get_by_ids_full_docs": "select ID,NVL(content,'') as content from LIGHTRAG_DOC_FULL where workspace=:workspace and ID in ({ids})",
|
||||
|
||||
"get_by_ids_text_chunks": "select ID,TOKENS,NVL(content,'') as content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID in ({ids})",
|
||||
|
||||
"filter_keys": "select id from {table_name} where workspace=:workspace and id in ({ids})",
|
||||
"merge_doc_full": """ MERGE INTO LIGHTRAG_DOC_FULL a
|
||||
USING DUAL
|
||||
ON (a.id = :check_id)
|
||||
WHEN NOT MATCHED THEN
|
||||
INSERT(id,content,workspace) values(:id,:content,:workspace)
|
||||
""",
|
||||
|
||||
"merge_doc_full": """MERGE INTO LIGHTRAG_DOC_FULL a
|
||||
USING DUAL
|
||||
ON (a.id = :id and a.workspace = :workspace)
|
||||
WHEN NOT MATCHED THEN
|
||||
INSERT(id,content,workspace) values(:id,:content,:workspace)""",
|
||||
|
||||
"merge_chunk": """MERGE INTO LIGHTRAG_DOC_CHUNKS a
|
||||
USING DUAL
|
||||
ON (a.id = :check_id)
|
||||
WHEN NOT MATCHED THEN
|
||||
INSERT(id,content,workspace,tokens,chunk_order_index,full_doc_id,content_vector)
|
||||
values (:id,:content,:workspace,:tokens,:chunk_order_index,:full_doc_id,:content_vector) """,
|
||||
USING DUAL
|
||||
ON (a.id = :check_id)
|
||||
WHEN NOT MATCHED THEN
|
||||
INSERT(id,content,workspace,tokens,chunk_order_index,full_doc_id,content_vector)
|
||||
values (:id,:content,:workspace,:tokens,:chunk_order_index,:full_doc_id,:content_vector) """,
|
||||
|
||||
"upsert_llm_response_cache": """MERGE INTO LIGHTRAG_LLM_CACHE a
|
||||
USING DUAL
|
||||
ON (a.id = :id)
|
||||
WHEN NOT MATCHED THEN
|
||||
INSERT (workspace,id,original_prompt,return_value,cache_mode)
|
||||
VALUES (:workspace,:id,:original_prompt,:return_value,:cache_mode)
|
||||
WHEN MATCHED THEN UPDATE
|
||||
SET original_prompt = :original_prompt,
|
||||
return_value = :return_value,
|
||||
cache_mode = :cache_mode,
|
||||
updatetime = SYSDATE""",
|
||||
|
||||
"get_by_id_doc_status": "SELECT id FROM LIGHTRAG_DOC_FULL WHERE workspace=:workspace AND id IN ({ids})",
|
||||
|
||||
"get_status_counts": """SELECT status as "status", COUNT(1) as "count"
|
||||
FROM LIGHTRAG_DOC_FULL WHERE workspace=:workspace GROUP BY STATUS""",
|
||||
|
||||
"get_docs_by_status": """select content_length,status,
|
||||
TO_CHAR(created_at,'YYYY-MM-DD HH24:MI:SS') as created_at,TO_CHAR(updatetime,'YYYY-MM-DD HH24:MI:SS') as updatetime
|
||||
from LIGHTRAG_DOC_STATUS where workspace=:workspace and status=:status""",
|
||||
|
||||
"merge_doc_status":"""MERGE INTO LIGHTRAG_DOC_FULL a
|
||||
USING DUAL
|
||||
ON (a.id = :id and a.workspace = :workspace)
|
||||
WHEN NOT MATCHED THEN
|
||||
INSERT (id,content_summary,content_length,chunks_count,status) values(:id,:content_summary,:content_length,:chunks_count,:status)
|
||||
WHEN MATCHED THEN UPDATE
|
||||
SET content_summary = :content_summary,
|
||||
content_length = :content_length,
|
||||
chunks_count = :chunks_count,
|
||||
status = :status,
|
||||
updatetime = SYSDATE""",
|
||||
|
||||
# SQL for VectorStorage
|
||||
"entities": """SELECT name as entity_name FROM
|
||||
(SELECT id,name,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
|
||||
@@ -714,16 +911,22 @@ SQL_TEMPLATES = {
|
||||
COLUMNS (a.name as source_name,b.name as target_name))""",
|
||||
"merge_node": """MERGE INTO LIGHTRAG_GRAPH_NODES a
|
||||
USING DUAL
|
||||
ON (a.workspace = :workspace and a.name=:name and a.source_chunk_id=:source_chunk_id)
|
||||
ON (a.workspace=:workspace and a.name=:name)
|
||||
WHEN NOT MATCHED THEN
|
||||
INSERT(workspace,name,entity_type,description,source_chunk_id,content,content_vector)
|
||||
values (:workspace,:name,:entity_type,:description,:source_chunk_id,:content,:content_vector) """,
|
||||
values (:workspace,:name,:entity_type,:description,:source_chunk_id,:content,:content_vector)
|
||||
WHEN MATCHED THEN
|
||||
UPDATE SET
|
||||
entity_type=:entity_type,description=:description,source_chunk_id=:source_chunk_id,content=:content,content_vector=:content_vector,updatetime=SYSDATE""",
|
||||
"merge_edge": """MERGE INTO LIGHTRAG_GRAPH_EDGES a
|
||||
USING DUAL
|
||||
ON (a.workspace = :workspace and a.source_name=:source_name and a.target_name=:target_name and a.source_chunk_id=:source_chunk_id)
|
||||
ON (a.workspace=:workspace and a.source_name=:source_name and a.target_name=:target_name)
|
||||
WHEN NOT MATCHED THEN
|
||||
INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector)
|
||||
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector) """,
|
||||
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector)
|
||||
WHEN MATCHED THEN
|
||||
UPDATE SET
|
||||
weight=:weight,keywords=:keywords,description=:description,source_chunk_id=:source_chunk_id,content=:content,content_vector=:content_vector,updatetime=SYSDATE""",
|
||||
"get_all_nodes": """WITH t0 AS (
|
||||
SELECT name AS id, entity_type AS label, entity_type, description,
|
||||
'["' || replace(source_chunk_id, '<SEP>', '","') || '"]' source_chunk_ids
|
||||
|
@@ -79,6 +79,7 @@ Neo4JStorage = lazy_external_import(".kg.neo4j_impl", "Neo4JStorage")
|
||||
OracleKVStorage = lazy_external_import(".kg.oracle_impl", "OracleKVStorage")
|
||||
OracleGraphStorage = lazy_external_import(".kg.oracle_impl", "OracleGraphStorage")
|
||||
OracleVectorDBStorage = lazy_external_import(".kg.oracle_impl", "OracleVectorDBStorage")
|
||||
OracleDocStatusStorage = lazy_external_import(".kg.oracle_impl", "OracleDocStatusStorage")
|
||||
MilvusVectorDBStorge = lazy_external_import(".kg.milvus_impl", "MilvusVectorDBStorge")
|
||||
MongoKVStorage = lazy_external_import(".kg.mongo_impl", "MongoKVStorage")
|
||||
ChromaVectorDBStorage = lazy_external_import(".kg.chroma_impl", "ChromaVectorDBStorage")
|
||||
@@ -290,6 +291,7 @@ class LightRAG:
|
||||
# kv storage
|
||||
"JsonKVStorage": JsonKVStorage,
|
||||
"OracleKVStorage": OracleKVStorage,
|
||||
"OracleDocStatusStorage":OracleDocStatusStorage,
|
||||
"MongoKVStorage": MongoKVStorage,
|
||||
"TiDBKVStorage": TiDBKVStorage,
|
||||
# vector storage
|
||||
|
@@ -59,13 +59,15 @@ async def _handle_entity_relation_summary(
|
||||
description: str,
|
||||
global_config: dict,
|
||||
) -> str:
|
||||
"""Handle entity relation summary
|
||||
For each entity or relation, input is the combined description of already existing description and new description.
|
||||
If too long, use LLM to summarize.
|
||||
"""
|
||||
use_llm_func: callable = global_config["llm_model_func"]
|
||||
llm_max_tokens = global_config["llm_model_max_token_size"]
|
||||
tiktoken_model_name = global_config["tiktoken_model_name"]
|
||||
summary_max_tokens = global_config["entity_summary_to_max_tokens"]
|
||||
language = global_config["addon_params"].get(
|
||||
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
||||
)
|
||||
language = global_config["addon_params"].get("language", PROMPTS["DEFAULT_LANGUAGE"])
|
||||
|
||||
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
|
||||
if len(tokens) < summary_max_tokens: # No need for summary
|
||||
@@ -139,6 +141,7 @@ async def _merge_nodes_then_upsert(
|
||||
knowledge_graph_inst: BaseGraphStorage,
|
||||
global_config: dict,
|
||||
):
|
||||
"""Get existing nodes from knowledge graph use name,if exists, merge data, else create, then upsert."""
|
||||
already_entity_types = []
|
||||
already_source_ids = []
|
||||
already_description = []
|
||||
@@ -319,7 +322,7 @@ async def extract_entities(
|
||||
llm_response_cache.global_config = new_config
|
||||
need_to_restore = True
|
||||
if history_messages:
|
||||
history = json.dumps(history_messages)
|
||||
history = json.dumps(history_messages,ensure_ascii=False)
|
||||
_prompt = history + "\n" + input_text
|
||||
else:
|
||||
_prompt = input_text
|
||||
@@ -351,6 +354,11 @@ async def extract_entities(
|
||||
return await use_llm_func(input_text)
|
||||
|
||||
async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]):
|
||||
""""Prpocess a single chunk
|
||||
Args:
|
||||
chunk_key_dp (tuple[str, TextChunkSchema]):
|
||||
("chunck-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int})
|
||||
"""
|
||||
nonlocal already_processed, already_entities, already_relations
|
||||
chunk_key = chunk_key_dp[0]
|
||||
chunk_dp = chunk_key_dp[1]
|
||||
|
@@ -36,7 +36,7 @@ logger = logging.getLogger("lightrag")
|
||||
def set_logger(log_file: str):
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
file_handler = logging.FileHandler(log_file)
|
||||
file_handler = logging.FileHandler(log_file, encoding='utf-8')
|
||||
file_handler.setLevel(logging.DEBUG)
|
||||
|
||||
formatter = logging.Formatter(
|
||||
@@ -473,7 +473,7 @@ async def handle_cache(hashing_kv, args_hash, prompt, mode="default"):
|
||||
quantized = min_val = max_val = None
|
||||
if is_embedding_cache_enabled:
|
||||
# Use embedding cache
|
||||
embedding_model_func = hashing_kv.global_config["embedding_func"]["func"]
|
||||
embedding_model_func = hashing_kv.global_config["embedding_func"].func #["func"]
|
||||
llm_model_func = hashing_kv.global_config.get("llm_model_func")
|
||||
|
||||
current_embedding = await embedding_model_func([prompt])
|
||||
|
Reference in New Issue
Block a user