add namespace prefix to storage namespaces
This commit is contained in:
@@ -40,7 +40,7 @@ from .ollama_api import (
|
||||
from .ollama_api import ollama_server_infos
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv()
|
||||
load_dotenv(override=True)
|
||||
|
||||
|
||||
class RAGStorageConfig:
|
||||
@@ -532,6 +532,16 @@ def parse_args() -> argparse.Namespace:
|
||||
help="Number of conversation history turns to include (default: from env or 3)",
|
||||
)
|
||||
|
||||
# Namespace
|
||||
parser.add_argument(
|
||||
"--namespace-prefix",
|
||||
type=str,
|
||||
default=get_env_value(
|
||||
"NAMESPACE_PREFIX", ""
|
||||
),
|
||||
help="Prefix of the namespace",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
|
||||
@@ -861,6 +871,8 @@ def create_app(args):
|
||||
"similarity_threshold": 0.95,
|
||||
"use_llm_check": False,
|
||||
},
|
||||
log_level=args.log_level,
|
||||
namespace_prefix=args.namespace_prefix,
|
||||
)
|
||||
else:
|
||||
rag = LightRAG(
|
||||
@@ -890,6 +902,8 @@ def create_app(args):
|
||||
"similarity_threshold": 0.95,
|
||||
"use_llm_check": False,
|
||||
},
|
||||
log_level=args.log_level,
|
||||
namespace_prefix=args.namespace_prefix,
|
||||
)
|
||||
|
||||
async def index_file(file_path: Union[str, Path]) -> None:
|
||||
|
@@ -15,7 +15,7 @@ from dotenv import load_dotenv
|
||||
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv()
|
||||
load_dotenv(override=True)
|
||||
|
||||
|
||||
class OllamaServerInfos:
|
||||
|
@@ -52,7 +52,7 @@ class MongoKVStorage(BaseKVStorage):
|
||||
return set([s for s in data if s not in existing_ids])
|
||||
|
||||
async def upsert(self, data: dict[str, dict]):
|
||||
if self.namespace == "llm_response_cache":
|
||||
if self.namespace.endswith("llm_response_cache"):
|
||||
for mode, items in data.items():
|
||||
for k, v in tqdm_async(items.items(), desc="Upserting"):
|
||||
key = f"{mode}_{k}"
|
||||
@@ -69,7 +69,7 @@ class MongoKVStorage(BaseKVStorage):
|
||||
return data
|
||||
|
||||
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
|
||||
if "llm_response_cache" == self.namespace:
|
||||
if self.namespace.endswith("llm_response_cache"):
|
||||
res = {}
|
||||
v = self._data.find_one({"_id": mode + "_" + id})
|
||||
if v:
|
||||
|
@@ -185,7 +185,7 @@ class OracleKVStorage(BaseKVStorage):
|
||||
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
||||
params = {"workspace": self.db.workspace, "id": id}
|
||||
# print("get_by_id:"+SQL)
|
||||
if "llm_response_cache" == self.namespace:
|
||||
if self.namespace.endswith("llm_response_cache"):
|
||||
array_res = await self.db.query(SQL, params, multirows=True)
|
||||
res = {}
|
||||
for row in array_res:
|
||||
@@ -201,7 +201,7 @@ class OracleKVStorage(BaseKVStorage):
|
||||
"""Specifically for llm_response_cache."""
|
||||
SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
||||
params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
|
||||
if "llm_response_cache" == self.namespace:
|
||||
if self.namespace.endswith("llm_response_cache"):
|
||||
array_res = await self.db.query(SQL, params, multirows=True)
|
||||
res = {}
|
||||
for row in array_res:
|
||||
@@ -218,7 +218,7 @@ class OracleKVStorage(BaseKVStorage):
|
||||
params = {"workspace": self.db.workspace}
|
||||
# print("get_by_ids:"+SQL)
|
||||
res = await self.db.query(SQL, params, multirows=True)
|
||||
if "llm_response_cache" == self.namespace:
|
||||
if self.namespace.endswith("llm_response_cache"):
|
||||
modes = set()
|
||||
dict_res: dict[str, dict] = {}
|
||||
for row in res:
|
||||
@@ -269,7 +269,7 @@ class OracleKVStorage(BaseKVStorage):
|
||||
|
||||
################ INSERT METHODS ################
|
||||
async def upsert(self, data: dict[str, dict]):
|
||||
if self.namespace == "text_chunks":
|
||||
if self.namespace.endswith("text_chunks"):
|
||||
list_data = [
|
||||
{
|
||||
"id": k,
|
||||
@@ -302,7 +302,7 @@ class OracleKVStorage(BaseKVStorage):
|
||||
"status": item["status"],
|
||||
}
|
||||
await self.db.execute(merge_sql, _data)
|
||||
if self.namespace == "full_docs":
|
||||
if self.namespace.endswith("full_docs"):
|
||||
for k, v in data.items():
|
||||
# values.clear()
|
||||
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
||||
@@ -313,7 +313,7 @@ class OracleKVStorage(BaseKVStorage):
|
||||
}
|
||||
await self.db.execute(merge_sql, _data)
|
||||
|
||||
if self.namespace == "llm_response_cache":
|
||||
if self.namespace.endswith("llm_response_cache"):
|
||||
for mode, items in data.items():
|
||||
for k, v in items.items():
|
||||
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
||||
@@ -334,8 +334,10 @@ class OracleKVStorage(BaseKVStorage):
|
||||
await self.db.execute(SQL, params)
|
||||
|
||||
async def index_done_callback(self):
|
||||
if self.namespace in ["full_docs", "text_chunks"]:
|
||||
for n in ("full_docs", "text_chunks"):
|
||||
if self.namespace.endswith(n):
|
||||
logger.info("full doc and chunk data had been saved into oracle db!")
|
||||
break
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@@ -187,7 +187,7 @@ class PGKVStorage(BaseKVStorage):
|
||||
"""Get doc_full data by id."""
|
||||
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
||||
params = {"workspace": self.db.workspace, "id": id}
|
||||
if "llm_response_cache" == self.namespace:
|
||||
if self.namespace.endswith("llm_response_cache"):
|
||||
array_res = await self.db.query(sql, params, multirows=True)
|
||||
res = {}
|
||||
for row in array_res:
|
||||
@@ -203,7 +203,7 @@ class PGKVStorage(BaseKVStorage):
|
||||
"""Specifically for llm_response_cache."""
|
||||
sql = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
||||
params = {"workspace": self.db.workspace, mode: mode, "id": id}
|
||||
if "llm_response_cache" == self.namespace:
|
||||
if self.namespace.endswith("llm_response_cache"):
|
||||
array_res = await self.db.query(sql, params, multirows=True)
|
||||
res = {}
|
||||
for row in array_res:
|
||||
@@ -219,7 +219,7 @@ class PGKVStorage(BaseKVStorage):
|
||||
ids=",".join([f"'{id}'" for id in ids])
|
||||
)
|
||||
params = {"workspace": self.db.workspace}
|
||||
if "llm_response_cache" == self.namespace:
|
||||
if self.namespace.endswith("llm_response_cache"):
|
||||
array_res = await self.db.query(sql, params, multirows=True)
|
||||
modes = set()
|
||||
dict_res: dict[str, dict] = {}
|
||||
@@ -239,7 +239,7 @@ class PGKVStorage(BaseKVStorage):
|
||||
return None
|
||||
|
||||
async def all_keys(self) -> list[dict]:
|
||||
if "llm_response_cache" == self.namespace:
|
||||
if self.namespace.endswith("llm_response_cache"):
|
||||
sql = "select workspace,mode,id from lightrag_llm_cache"
|
||||
res = await self.db.query(sql, multirows=True)
|
||||
return res
|
||||
@@ -270,9 +270,9 @@ class PGKVStorage(BaseKVStorage):
|
||||
|
||||
################ INSERT METHODS ################
|
||||
async def upsert(self, data: Dict[str, dict]):
|
||||
if self.namespace == "text_chunks":
|
||||
if self.namespace.endswith("text_chunks"):
|
||||
pass
|
||||
elif self.namespace == "full_docs":
|
||||
elif self.namespace.endswith("full_docs"):
|
||||
for k, v in data.items():
|
||||
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
|
||||
_data = {
|
||||
@@ -281,7 +281,7 @@ class PGKVStorage(BaseKVStorage):
|
||||
"workspace": self.db.workspace,
|
||||
}
|
||||
await self.db.execute(upsert_sql, _data)
|
||||
elif self.namespace == "llm_response_cache":
|
||||
elif self.namespace.endswith("llm_response_cache"):
|
||||
for mode, items in data.items():
|
||||
for k, v in items.items():
|
||||
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
||||
@@ -296,8 +296,10 @@ class PGKVStorage(BaseKVStorage):
|
||||
await self.db.execute(upsert_sql, _data)
|
||||
|
||||
async def index_done_callback(self):
|
||||
if self.namespace in ["full_docs", "text_chunks"]:
|
||||
for n in ("full_docs", "text_chunks"):
|
||||
if self.namespace.endswith(n):
|
||||
logger.info("full doc and chunk data had been saved into postgresql db!")
|
||||
break
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -389,11 +391,11 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
for i, d in enumerate(list_data):
|
||||
d["__vector__"] = embeddings[i]
|
||||
for item in list_data:
|
||||
if self.namespace == "chunks":
|
||||
if self.namespace.endswith("chunks"):
|
||||
upsert_sql, data = self._upsert_chunks(item)
|
||||
elif self.namespace == "entities":
|
||||
elif self.namespace.endswith("entities"):
|
||||
upsert_sql, data = self._upsert_entities(item)
|
||||
elif self.namespace == "relationships":
|
||||
elif self.namespace.endswith("relationships"):
|
||||
upsert_sql, data = self._upsert_relationships(item)
|
||||
else:
|
||||
raise ValueError(f"{self.namespace} is not supported")
|
||||
|
@@ -160,7 +160,7 @@ class TiDBKVStorage(BaseKVStorage):
|
||||
async def upsert(self, data: dict[str, dict]):
|
||||
left_data = {k: v for k, v in data.items() if k not in self._data}
|
||||
self._data.update(left_data)
|
||||
if self.namespace == "text_chunks":
|
||||
if self.namespace.endswith("text_chunks"):
|
||||
list_data = [
|
||||
{
|
||||
"__id__": k,
|
||||
@@ -196,7 +196,7 @@ class TiDBKVStorage(BaseKVStorage):
|
||||
)
|
||||
await self.db.execute(merge_sql, data)
|
||||
|
||||
if self.namespace == "full_docs":
|
||||
if self.namespace.endswith("full_docs"):
|
||||
merge_sql = SQL_TEMPLATES["upsert_doc_full"]
|
||||
data = []
|
||||
for k, v in self._data.items():
|
||||
@@ -211,8 +211,10 @@ class TiDBKVStorage(BaseKVStorage):
|
||||
return left_data
|
||||
|
||||
async def index_done_callback(self):
|
||||
if self.namespace in ["full_docs", "text_chunks"]:
|
||||
for n in ("full_docs", "text_chunks"):
|
||||
if self.namespace.endswith(n):
|
||||
logger.info("full doc and chunk data had been saved into TiDB db!")
|
||||
break
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -258,7 +260,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
if not len(data):
|
||||
logger.warning("You insert an empty data to vector DB")
|
||||
return []
|
||||
if self.namespace == "chunks":
|
||||
if self.namespace.endswith("chunks"):
|
||||
return []
|
||||
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
||||
|
||||
@@ -288,7 +290,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
for i, d in enumerate(list_data):
|
||||
d["content_vector"] = embeddings[i]
|
||||
|
||||
if self.namespace == "entities":
|
||||
if self.namespace.endswith("entities"):
|
||||
data = []
|
||||
for item in list_data:
|
||||
param = {
|
||||
@@ -309,7 +311,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
merge_sql = SQL_TEMPLATES["insert_entity"]
|
||||
await self.db.execute(merge_sql, data)
|
||||
|
||||
elif self.namespace == "relationships":
|
||||
elif self.namespace.endswith("relationships"):
|
||||
data = []
|
||||
for item in list_data:
|
||||
param = {
|
||||
|
@@ -167,6 +167,7 @@ class LightRAG:
|
||||
|
||||
# storage
|
||||
vector_db_storage_cls_kwargs: dict = field(default_factory=dict)
|
||||
namespace_prefix: str = field(default="")
|
||||
|
||||
enable_llm_cache: bool = True
|
||||
# Sometimes there are some reason the LLM failed at Extracting Entities, and we want to continue without LLM cost, we can use this flag
|
||||
@@ -228,12 +229,12 @@ class LightRAG:
|
||||
)
|
||||
|
||||
self.json_doc_status_storage = self.key_string_value_json_storage_cls(
|
||||
namespace="json_doc_status_storage",
|
||||
namespace=self.namespace_prefix + "json_doc_status_storage",
|
||||
embedding_func=None,
|
||||
)
|
||||
|
||||
self.llm_response_cache = self.key_string_value_json_storage_cls(
|
||||
namespace="llm_response_cache",
|
||||
namespace=self.namespace_prefix + "llm_response_cache",
|
||||
embedding_func=self.embedding_func,
|
||||
)
|
||||
|
||||
@@ -241,15 +242,15 @@ class LightRAG:
|
||||
# add embedding func by walter
|
||||
####
|
||||
self.full_docs = self.key_string_value_json_storage_cls(
|
||||
namespace="full_docs",
|
||||
namespace=self.namespace_prefix + "full_docs",
|
||||
embedding_func=self.embedding_func,
|
||||
)
|
||||
self.text_chunks = self.key_string_value_json_storage_cls(
|
||||
namespace="text_chunks",
|
||||
namespace=self.namespace_prefix + "text_chunks",
|
||||
embedding_func=self.embedding_func,
|
||||
)
|
||||
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
||||
namespace="chunk_entity_relation",
|
||||
namespace=self.namespace_prefix + "chunk_entity_relation",
|
||||
embedding_func=self.embedding_func,
|
||||
)
|
||||
####
|
||||
@@ -257,17 +258,17 @@ class LightRAG:
|
||||
####
|
||||
|
||||
self.entities_vdb = self.vector_db_storage_cls(
|
||||
namespace="entities",
|
||||
namespace=self.namespace_prefix + "entities",
|
||||
embedding_func=self.embedding_func,
|
||||
meta_fields={"entity_name"},
|
||||
)
|
||||
self.relationships_vdb = self.vector_db_storage_cls(
|
||||
namespace="relationships",
|
||||
namespace=self.namespace_prefix + "relationships",
|
||||
embedding_func=self.embedding_func,
|
||||
meta_fields={"src_id", "tgt_id"},
|
||||
)
|
||||
self.chunks_vdb = self.vector_db_storage_cls(
|
||||
namespace="chunks",
|
||||
namespace=self.namespace_prefix + "chunks",
|
||||
embedding_func=self.embedding_func,
|
||||
)
|
||||
|
||||
@@ -277,7 +278,7 @@ class LightRAG:
|
||||
hashing_kv = self.llm_response_cache
|
||||
else:
|
||||
hashing_kv = self.key_string_value_json_storage_cls(
|
||||
namespace="llm_response_cache",
|
||||
namespace=self.namespace_prefix + "llm_response_cache",
|
||||
embedding_func=self.embedding_func,
|
||||
)
|
||||
|
||||
@@ -292,7 +293,7 @@ class LightRAG:
|
||||
# Initialize document status storage
|
||||
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
|
||||
self.doc_status = self.doc_status_storage_cls(
|
||||
namespace="doc_status",
|
||||
namespace=self.namespace_prefix + "doc_status",
|
||||
global_config=global_config,
|
||||
embedding_func=None,
|
||||
)
|
||||
@@ -928,7 +929,7 @@ class LightRAG:
|
||||
if self.llm_response_cache
|
||||
and hasattr(self.llm_response_cache, "global_config")
|
||||
else self.key_string_value_json_storage_cls(
|
||||
namespace="llm_response_cache",
|
||||
namespace=self.namespace_prefix + "llm_response_cache",
|
||||
global_config=asdict(self),
|
||||
embedding_func=self.embedding_func,
|
||||
),
|
||||
@@ -945,7 +946,7 @@ class LightRAG:
|
||||
if self.llm_response_cache
|
||||
and hasattr(self.llm_response_cache, "global_config")
|
||||
else self.key_string_value_json_storage_cls(
|
||||
namespace="llm_response_cache",
|
||||
namespace=self.namespace_prefix + "llm_response_cache",
|
||||
global_config=asdict(self),
|
||||
embedding_func=self.embedding_func,
|
||||
),
|
||||
@@ -964,7 +965,7 @@ class LightRAG:
|
||||
if self.llm_response_cache
|
||||
and hasattr(self.llm_response_cache, "global_config")
|
||||
else self.key_string_value_json_storage_cls(
|
||||
namespace="llm_response_cache",
|
||||
namespace=self.namespace_prefix + "llm_response_cache",
|
||||
global_config=asdict(self),
|
||||
embedding_func=self.embedding_func,
|
||||
),
|
||||
@@ -1005,7 +1006,7 @@ class LightRAG:
|
||||
global_config=asdict(self),
|
||||
hashing_kv=self.llm_response_cache
|
||||
or self.key_string_value_json_storage_cls(
|
||||
namespace="llm_response_cache",
|
||||
namespace=self.namespace_prefix + "llm_response_cache",
|
||||
global_config=asdict(self),
|
||||
embedding_func=self.embedding_func,
|
||||
),
|
||||
@@ -1036,7 +1037,7 @@ class LightRAG:
|
||||
if self.llm_response_cache
|
||||
and hasattr(self.llm_response_cache, "global_config")
|
||||
else self.key_string_value_json_storage_cls(
|
||||
namespace="llm_response_cache",
|
||||
namespace=self.namespace_prefix + "llm_response_cache",
|
||||
global_config=asdict(self),
|
||||
embedding_func=self.embedding_funcne,
|
||||
),
|
||||
@@ -1052,7 +1053,7 @@ class LightRAG:
|
||||
if self.llm_response_cache
|
||||
and hasattr(self.llm_response_cache, "global_config")
|
||||
else self.key_string_value_json_storage_cls(
|
||||
namespace="llm_response_cache",
|
||||
namespace=self.namespace_prefix + "llm_response_cache",
|
||||
global_config=asdict(self),
|
||||
embedding_func=self.embedding_func,
|
||||
),
|
||||
@@ -1071,7 +1072,7 @@ class LightRAG:
|
||||
if self.llm_response_cache
|
||||
and hasattr(self.llm_response_cache, "global_config")
|
||||
else self.key_string_value_json_storage_cls(
|
||||
namespace="llm_response_cache",
|
||||
namespace=self.namespace_prefix + "llm_response_cache",
|
||||
global_config=asdict(self),
|
||||
embedding_func=self.embedding_func,
|
||||
),
|
||||
|
Reference in New Issue
Block a user