cleaned code

This commit is contained in:
Yannick Stephan
2025-02-19 22:07:25 +01:00
parent 05914213e2
commit 8958046b74
3 changed files with 12 additions and 15 deletions

View File

@@ -9,15 +9,14 @@ PROMPTS["DEFAULT_LANGUAGE"] = "English"
PROMPTS["DEFAULT_TUPLE_DELIMITER"] = "<|>"
PROMPTS["DEFAULT_RECORD_DELIMITER"] = "##"
PROMPTS["DEFAULT_COMPLETION_DELIMITER"] = "<|COMPLETE|>"
PROMPTS["process_tickers"] = ["", "", "", "", "", "", "", "", "", ""]
PROMPTS["DEFAULT_ENTITY_TYPES"] = ["organization", "person", "geo", "event", "category"]
PROMPTS["entity_extraction"] = """-Goal-
PROMPTS["entity_extraction"] = """---Goal---
Given a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.
Use {language} as output language.
-Steps-
---Steps---
1. Identify all entities. For each identified entity, extract the following information:
- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.
- entity_type: One of the following types: [{entity_types}]
@@ -41,18 +40,17 @@ Format the content-level key words as ("content_keywords"{tuple_delimiter}<high_
5. When finished, output {completion_delimiter}
######################
-Examples-
---Examples---
######################
{examples}
#############################
-Real Data-
---Real Data---
######################
Entity_types: {entity_types}
Text: {input_text}
######################
Output:
"""
Output:"""
PROMPTS["entity_extraction_examples"] = [
"""Example 1:
@@ -137,7 +135,7 @@ Make sure it is written in third person, and include the entity names so we the
Use {language} as output language.
#######
-Data-
---Data---
Entities: {entity_name}
Description List: {description_list}
#######
@@ -205,12 +203,12 @@ Given the query and conversation history, list both high-level and low-level key
- "low_level_keywords" for specific entities or details
######################
-Examples-
---Examples---
######################
{examples}
#############################
-Real Data-
---Real Data---
######################
Conversation History:
{history}