Optimization logic

This commit is contained in:
jin
2024-11-25 13:29:55 +08:00
parent 662303f605
commit 89c2de54a2
10 changed files with 342 additions and 423 deletions

View File

@@ -21,6 +21,8 @@ class QueryParam:
response_type: str = "Multiple Paragraphs"
# Number of top-k items to retrieve; corresponds to entities in "local" mode and relationships in "global" mode.
top_k: int = 60
# Number of document chunks to retrieve.
# top_n: int = 10
# Number of tokens for the original chunks.
max_token_for_text_unit: int = 4000
# Number of tokens for the relationship descriptions

View File

@@ -333,6 +333,8 @@ class OracleGraphStorage(BaseGraphStorage):
entity_type = node_data["entity_type"]
description = node_data["description"]
source_id = node_data["source_id"]
logger.debug(f"entity_name:{entity_name}, entity_type:{entity_type}")
content = entity_name + description
contents = [content]
batches = [
@@ -369,6 +371,8 @@ class OracleGraphStorage(BaseGraphStorage):
keywords = edge_data["keywords"]
description = edge_data["description"]
source_chunk_id = edge_data["source_id"]
logger.debug(f"source_name:{source_name}, target_name:{target_name}, keywords: {keywords}")
content = keywords + source_name + target_name + description
contents = [content]
batches = [
@@ -544,6 +548,14 @@ class OracleGraphStorage(BaseGraphStorage):
res = await self.db.query(sql=SQL,params=params, multirows=True)
if res:
return res
async def get_statistics(self):
SQL = SQL_TEMPLATES["get_statistics"]
params = {"workspace":self.db.workspace}
res = await self.db.query(sql=SQL,params=params, multirows=True)
if res:
return res
N_T = {
"full_docs": "LIGHTRAG_DOC_FULL",
"text_chunks": "LIGHTRAG_DOC_CHUNKS",
@@ -715,18 +727,36 @@ SQL_TEMPLATES = {
WHEN NOT MATCHED THEN
INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector)
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector) """,
"get_all_nodes":"""SELECT t1.name as id,t1.entity_type as label,t1.DESCRIPTION,t2.content
FROM LIGHTRAG_GRAPH_NODES t1
LEFT JOIN LIGHTRAG_DOC_CHUNKS t2 on t1.source_chunk_id=t2.id
WHERE t1.workspace=:workspace
order by t1.CREATETIME DESC
fetch first :limit rows only
""",
"get_all_nodes":"""WITH t0 AS (
SELECT name AS id, entity_type AS label, entity_type, description,
'["' || replace(source_chunk_id, '<SEP>', '","') || '"]' source_chunk_ids
FROM lightrag_graph_nodes
WHERE workspace = :workspace
ORDER BY createtime DESC fetch first :limit rows only
), t1 AS (
SELECT t0.id, source_chunk_id
FROM t0, JSON_TABLE ( source_chunk_ids, '$[*]' COLUMNS ( source_chunk_id PATH '$' ) )
), t2 AS (
SELECT t1.id, LISTAGG(t2.content, '\n') content
FROM t1 LEFT JOIN lightrag_doc_chunks t2 ON t1.source_chunk_id = t2.id
GROUP BY t1.id
)
SELECT t0.id, label, entity_type, description, t2.content
FROM t0 LEFT JOIN t2 ON t0.id = t2.id""",
"get_all_edges":"""SELECT t1.id,t1.keywords as label,t1.keywords, t1.source_name as source, t1.target_name as target,
t1.weight,t1.DESCRIPTION,t2.content
FROM LIGHTRAG_GRAPH_EDGES t1
LEFT JOIN LIGHTRAG_DOC_CHUNKS t2 on t1.source_chunk_id=t2.id
WHERE t1.workspace=:workspace
order by t1.CREATETIME DESC
fetch first :limit rows only"""
fetch first :limit rows only""",
"get_statistics":"""select count(distinct CASE WHEN type='node' THEN id END) as nodes_count,
count(distinct CASE WHEN type='edge' THEN id END) as edges_count
FROM (
select 'node' as type, id FROM GRAPH_TABLE (lightrag_graph
MATCH (a) WHERE a.workspace=:workspace columns(a.name as id))
UNION
select 'edge' as type, TO_CHAR(id) id FROM GRAPH_TABLE (lightrag_graph
MATCH (a)-[e]->(b) WHERE e.workspace=:workspace columns(e.id))
)""",
}

View File

@@ -12,9 +12,8 @@ from .llm import (
from .operate import (
chunking_by_token_size,
extract_entities,
local_query,
global_query,
hybrid_query,
# local_query,global_query,hybrid_query,
kg_query,
naive_query,
)
@@ -309,28 +308,8 @@ class LightRAG:
return loop.run_until_complete(self.aquery(query, param))
async def aquery(self, query: str, param: QueryParam = QueryParam()):
if param.mode == "local":
response = await local_query(
query,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.text_chunks,
param,
asdict(self),
)
elif param.mode == "global":
response = await global_query(
query,
self.chunk_entity_relation_graph,
self.entities_vdb,
self.relationships_vdb,
self.text_chunks,
param,
asdict(self),
)
elif param.mode == "hybrid":
response = await hybrid_query(
if param.mode in ["local", "global", "hybrid"]:
response = await kg_query(
query,
self.chunk_entity_relation_graph,
self.entities_vdb,

View File

@@ -69,12 +69,15 @@ async def openai_complete_if_cache(
response = await openai_async_client.chat.completions.create(
model=model, messages=messages, **kwargs
)
content = response.choices[0].message.content
if r'\u' in content:
content = content.encode('utf-8').decode('unicode_escape')
print(content)
if hashing_kv is not None:
await hashing_kv.upsert(
{args_hash: {"return": response.choices[0].message.content, "model": model}}
)
return response.choices[0].message.content
return content
@retry(
@@ -539,7 +542,7 @@ async def openai_embedding(
texts: list[str],
model: str = "text-embedding-3-small",
base_url: str = None,
api_key: str = None,
api_key: str = None
) -> np.ndarray:
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
@@ -548,7 +551,7 @@ async def openai_embedding(
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
)
response = await openai_async_client.embeddings.create(
model=model, input=texts, encoding_format="float"
model=model, input=texts, encoding_format="float"
)
return np.array([dp.embedding for dp in response.data])

View File

@@ -248,14 +248,23 @@ async def extract_entities(
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
ordered_chunks = list(chunks.items())
# add language and example number params to prompt
language = global_config["addon_params"].get("language",PROMPTS["DEFAULT_LANGUAGE"])
example_number = global_config["addon_params"].get("example_number", None)
if example_number and example_number<len(PROMPTS["entity_extraction_examples"]):
examples="\n".join(PROMPTS["entity_extraction_examples"][:int(example_number)])
else:
examples="\n".join(PROMPTS["entity_extraction_examples"])
entity_extract_prompt = PROMPTS["entity_extraction"]
context_base = dict(
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
entity_types=",".join(PROMPTS["DEFAULT_ENTITY_TYPES"]),
)
examples=examples,
language=language)
continue_prompt = PROMPTS["entiti_continue_extraction"]
if_loop_prompt = PROMPTS["entiti_if_loop_extraction"]
@@ -270,7 +279,6 @@ async def extract_entities(
content = chunk_dp["content"]
hint_prompt = entity_extract_prompt.format(**context_base, input_text=content)
final_result = await use_llm_func(hint_prompt)
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
for now_glean_index in range(entity_extract_max_gleaning):
glean_result = await use_llm_func(continue_prompt, history_messages=history)
@@ -388,8 +396,7 @@ async def extract_entities(
return knowledge_graph_inst
async def local_query(
async def kg_query(
query,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
@@ -399,43 +406,61 @@ async def local_query(
global_config: dict,
) -> str:
context = None
example_number = global_config["addon_params"].get("example_number", None)
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
examples = "\n".join(PROMPTS["keywords_extraction_examples"][:int(example_number)])
else:
examples="\n".join(PROMPTS["keywords_extraction_examples"])
# Set mode
if query_param.mode not in ["local", "global", "hybrid"]:
logger.error(f"Unknown mode {query_param.mode} in kg_query")
return PROMPTS["fail_response"]
# LLM generate keywords
use_model_func = global_config["llm_model_func"]
kw_prompt_temp = PROMPTS["keywords_extraction"]
kw_prompt = kw_prompt_temp.format(query=query)
result = await use_model_func(kw_prompt)
json_text = locate_json_string_body_from_string(result)
logger.debug("local_query json_text:", json_text)
kw_prompt = kw_prompt_temp.format(query=query,examples=examples)
result = await use_model_func(kw_prompt)
logger.info(f"kw_prompt result:")
print(result)
try:
json_text = locate_json_string_body_from_string(result)
keywords_data = json.loads(json_text)
keywords = keywords_data.get("low_level_keywords", [])
keywords = ", ".join(keywords)
except json.JSONDecodeError:
print(result)
try:
result = (
result.replace(kw_prompt[:-1], "")
.replace("user", "")
.replace("model", "")
.strip()
)
result = "{" + result.split("{")[1].split("}")[0] + "}"
keywords_data = json.loads(result)
keywords = keywords_data.get("low_level_keywords", [])
keywords = ", ".join(keywords)
# Handle parsing error
except json.JSONDecodeError as e:
print(f"JSON parsing error: {e}")
return PROMPTS["fail_response"]
if keywords:
context = await _build_local_query_context(
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])
# Handle parsing error
except json.JSONDecodeError as e:
print(f"JSON parsing error: {e} {result}")
return PROMPTS["fail_response"]
# Handdle keywords missing
if hl_keywords == [] and ll_keywords == []:
logger.warning("low_level_keywords and high_level_keywords is empty")
return PROMPTS["fail_response"]
if ll_keywords == [] and query_param.mode in ["local","hybrid"]:
logger.warning("low_level_keywords is empty")
return PROMPTS["fail_response"]
else:
ll_keywords = ", ".join(ll_keywords)
if hl_keywords == [] and query_param.mode in ["global","hybrid"]:
logger.warning("high_level_keywords is empty")
return PROMPTS["fail_response"]
else:
hl_keywords = ", ".join(hl_keywords)
# Build context
keywords = [ll_keywords, hl_keywords]
context = await _build_query_context(
keywords,
knowledge_graph_inst,
entities_vdb,
relationships_vdb,
text_chunks_db,
query_param,
)
if query_param.only_need_context:
return context
if context is None:
@@ -443,13 +468,13 @@ async def local_query(
sys_prompt_temp = PROMPTS["rag_response"]
sys_prompt = sys_prompt_temp.format(
context_data=context, response_type=query_param.response_type
)
)
if query_param.only_need_prompt:
return sys_prompt
response = await use_model_func(
query,
system_prompt=sys_prompt,
)
)
if len(response) > len(sys_prompt):
response = (
response.replace(sys_prompt, "")
@@ -464,22 +489,87 @@ async def local_query(
return response
async def _build_local_query_context(
async def _build_query_context(
query: list,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
):
ll_kewwords, hl_keywrds = query[0], query[1]
if query_param.mode in ["local", "hybrid"]:
if ll_kewwords == "":
ll_entities_context,ll_relations_context,ll_text_units_context = "","",""
warnings.warn("Low Level context is None. Return empty Low entity/relationship/source")
query_param.mode = "global"
else:
ll_entities_context,ll_relations_context,ll_text_units_context = await _get_node_data(
ll_kewwords,
knowledge_graph_inst,
entities_vdb,
text_chunks_db,
query_param
)
if query_param.mode in ["global", "hybrid"]:
if hl_keywrds == "":
hl_entities_context,hl_relations_context,hl_text_units_context = "","",""
warnings.warn("High Level context is None. Return empty High entity/relationship/source")
query_param.mode = "local"
else:
hl_entities_context,hl_relations_context,hl_text_units_context = await _get_edge_data(
hl_keywrds,
knowledge_graph_inst,
relationships_vdb,
text_chunks_db,
query_param
)
if query_param.mode == 'hybrid':
entities_context,relations_context,text_units_context = combine_contexts(
[hl_entities_context,ll_entities_context],
[hl_relations_context,ll_relations_context],
[hl_text_units_context,ll_text_units_context]
)
elif query_param.mode == 'local':
entities_context,relations_context,text_units_context = ll_entities_context,ll_relations_context,ll_text_units_context
elif query_param.mode == 'global':
entities_context,relations_context,text_units_context = hl_entities_context,hl_relations_context,hl_text_units_context
return f"""
# -----Entities-----
# ```csv
# {entities_context}
# ```
# -----Relationships-----
# ```csv
# {relations_context}
# ```
# -----Sources-----
# ```csv
# {text_units_context}
# ```
# """
async def _get_node_data(
query,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
):
# 获取相似的实体
results = await entities_vdb.query(query, top_k=query_param.top_k)
if not len(results):
return None
# 获取实体信息
node_datas = await asyncio.gather(
*[knowledge_graph_inst.get_node(r["entity_name"]) for r in results]
)
if not all([n is not None for n in node_datas]):
logger.warning("Some nodes are missing, maybe the storage is damaged")
# 获取实体的度
node_degrees = await asyncio.gather(
*[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results]
)
@@ -488,15 +578,19 @@ async def _build_local_query_context(
for k, n, d in zip(results, node_datas, node_degrees)
if n is not None
] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
# 根据实体获取文本片段
use_text_units = await _find_most_related_text_unit_from_entities(
node_datas, query_param, text_chunks_db, knowledge_graph_inst
)
# 获取关联的边
use_relations = await _find_most_related_edges_from_entities(
node_datas, query_param, knowledge_graph_inst
)
logger.info(
f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} text units"
)
)
# 构建提示词
entites_section_list = [["id", "entity", "type", "description", "rank"]]
for i, n in enumerate(node_datas):
entites_section_list.append(
@@ -531,20 +625,7 @@ async def _build_local_query_context(
for i, t in enumerate(use_text_units):
text_units_section_list.append([i, t["content"]])
text_units_context = list_of_list_to_csv(text_units_section_list)
return f"""
-----Entities-----
```csv
{entities_context}
```
-----Relationships-----
```csv
{relations_context}
```
-----Sources-----
```csv
{text_units_context}
```
"""
return entities_context,relations_context,text_units_context
async def _find_most_related_text_unit_from_entities(
@@ -659,88 +740,9 @@ async def _find_most_related_edges_from_entities(
return all_edges_data
async def global_query(
query,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
global_config: dict,
) -> str:
context = None
use_model_func = global_config["llm_model_func"]
kw_prompt_temp = PROMPTS["keywords_extraction"]
kw_prompt = kw_prompt_temp.format(query=query)
result = await use_model_func(kw_prompt)
json_text = locate_json_string_body_from_string(result)
logger.debug("global json_text:", json_text)
try:
keywords_data = json.loads(json_text)
keywords = keywords_data.get("high_level_keywords", [])
keywords = ", ".join(keywords)
except json.JSONDecodeError:
try:
result = (
result.replace(kw_prompt[:-1], "")
.replace("user", "")
.replace("model", "")
.strip()
)
result = "{" + result.split("{")[1].split("}")[0] + "}"
keywords_data = json.loads(result)
keywords = keywords_data.get("high_level_keywords", [])
keywords = ", ".join(keywords)
except json.JSONDecodeError as e:
# Handle parsing error
print(f"JSON parsing error: {e}")
return PROMPTS["fail_response"]
if keywords:
context = await _build_global_query_context(
keywords,
knowledge_graph_inst,
entities_vdb,
relationships_vdb,
text_chunks_db,
query_param,
)
if query_param.only_need_context:
return context
if context is None:
return PROMPTS["fail_response"]
sys_prompt_temp = PROMPTS["rag_response"]
sys_prompt = sys_prompt_temp.format(
context_data=context, response_type=query_param.response_type
)
if query_param.only_need_prompt:
return sys_prompt
response = await use_model_func(
query,
system_prompt=sys_prompt,
)
if len(response) > len(sys_prompt):
response = (
response.replace(sys_prompt, "")
.replace("user", "")
.replace("model", "")
.replace(query, "")
.replace("<system>", "")
.replace("</system>", "")
.strip()
)
return response
async def _build_global_query_context(
async def _get_edge_data(
keywords,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
@@ -782,6 +784,7 @@ async def _build_global_query_context(
logger.info(
f"Global query uses {len(use_entities)} entites, {len(edge_datas)} relations, {len(use_text_units)} text units"
)
relations_section_list = [
["id", "source", "target", "description", "keywords", "weight", "rank"]
]
@@ -816,21 +819,8 @@ async def _build_global_query_context(
for i, t in enumerate(use_text_units):
text_units_section_list.append([i, t["content"]])
text_units_context = list_of_list_to_csv(text_units_section_list)
return entities_context,relations_context,text_units_context
return f"""
-----Entities-----
```csv
{entities_context}
```
-----Relationships-----
```csv
{relations_context}
```
-----Sources-----
```csv
{text_units_context}
```
"""
async def _find_most_related_entities_from_relationships(
@@ -901,137 +891,11 @@ async def _find_related_text_unit_from_relationships(
return all_text_units
async def hybrid_query(
query,
knowledge_graph_inst: BaseGraphStorage,
entities_vdb: BaseVectorStorage,
relationships_vdb: BaseVectorStorage,
text_chunks_db: BaseKVStorage[TextChunkSchema],
query_param: QueryParam,
global_config: dict,
) -> str:
low_level_context = None
high_level_context = None
use_model_func = global_config["llm_model_func"]
kw_prompt_temp = PROMPTS["keywords_extraction"]
kw_prompt = kw_prompt_temp.format(query=query)
result = await use_model_func(kw_prompt)
json_text = locate_json_string_body_from_string(result)
logger.debug("hybrid_query json_text:", json_text)
try:
keywords_data = json.loads(json_text)
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])
hl_keywords = ", ".join(hl_keywords)
ll_keywords = ", ".join(ll_keywords)
except json.JSONDecodeError:
try:
result = (
result.replace(kw_prompt[:-1], "")
.replace("user", "")
.replace("model", "")
.strip()
)
result = "{" + result.split("{")[1].split("}")[0] + "}"
keywords_data = json.loads(result)
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])
hl_keywords = ", ".join(hl_keywords)
ll_keywords = ", ".join(ll_keywords)
# Handle parsing error
except json.JSONDecodeError as e:
print(f"JSON parsing error: {e}")
return PROMPTS["fail_response"]
if ll_keywords:
low_level_context = await _build_local_query_context(
ll_keywords,
knowledge_graph_inst,
entities_vdb,
text_chunks_db,
query_param,
)
if hl_keywords:
high_level_context = await _build_global_query_context(
hl_keywords,
knowledge_graph_inst,
entities_vdb,
relationships_vdb,
text_chunks_db,
query_param,
)
context = combine_contexts(high_level_context, low_level_context)
if query_param.only_need_context:
return context
if context is None:
return PROMPTS["fail_response"]
sys_prompt_temp = PROMPTS["rag_response"]
sys_prompt = sys_prompt_temp.format(
context_data=context, response_type=query_param.response_type
)
if query_param.only_need_prompt:
return sys_prompt
response = await use_model_func(
query,
system_prompt=sys_prompt,
)
if len(response) > len(sys_prompt):
response = (
response.replace(sys_prompt, "")
.replace("user", "")
.replace("model", "")
.replace(query, "")
.replace("<system>", "")
.replace("</system>", "")
.strip()
)
return response
def combine_contexts(high_level_context, low_level_context):
def combine_contexts(entities, relationships, sources):
# Function to extract entities, relationships, and sources from context strings
def extract_sections(context):
entities_match = re.search(
r"-----Entities-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL
)
relationships_match = re.search(
r"-----Relationships-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL
)
sources_match = re.search(
r"-----Sources-----\s*```csv\s*(.*?)\s*```", context, re.DOTALL
)
entities = entities_match.group(1) if entities_match else ""
relationships = relationships_match.group(1) if relationships_match else ""
sources = sources_match.group(1) if sources_match else ""
return entities, relationships, sources
# Extract sections from both contexts
if high_level_context is None:
warnings.warn(
"High Level context is None. Return empty High entity/relationship/source"
)
hl_entities, hl_relationships, hl_sources = "", "", ""
else:
hl_entities, hl_relationships, hl_sources = extract_sections(high_level_context)
if low_level_context is None:
warnings.warn(
"Low Level context is None. Return empty Low entity/relationship/source"
)
ll_entities, ll_relationships, ll_sources = "", "", ""
else:
ll_entities, ll_relationships, ll_sources = extract_sections(low_level_context)
hl_entities, ll_entities = entities[0], entities[1]
hl_relationships, ll_relationships = relationships[0],relationships[1]
hl_sources, ll_sources = sources[0], sources[1]
# Combine and deduplicate the entities
combined_entities = process_combine_contexts(hl_entities, ll_entities)
@@ -1043,21 +907,7 @@ def combine_contexts(high_level_context, low_level_context):
# Combine and deduplicate the sources
combined_sources = process_combine_contexts(hl_sources, ll_sources)
# Format the combined context
return f"""
-----Entities-----
```csv
{combined_entities}
```
-----Relationships-----
```csv
{combined_relationships}
```
-----Sources-----
```csv
{combined_sources}
```
"""
return combined_entities, combined_relationships, combined_sources
async def naive_query(
@@ -1080,7 +930,7 @@ async def naive_query(
max_token_size=query_param.max_token_for_text_unit,
)
logger.info(f"Truncate {len(chunks)} to {len(maybe_trun_chunks)} chunks")
section = "--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks])
section = "\n--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks])
if query_param.only_need_context:
return section
sys_prompt_temp = PROMPTS["naive_rag_response"]

View File

@@ -2,6 +2,7 @@ GRAPH_FIELD_SEP = "<SEP>"
PROMPTS = {}
PROMPTS["DEFAULT_LANGUAGE"] = "English"
PROMPTS["DEFAULT_TUPLE_DELIMITER"] = "<|>"
PROMPTS["DEFAULT_RECORD_DELIMITER"] = "##"
PROMPTS["DEFAULT_COMPLETION_DELIMITER"] = "<|COMPLETE|>"
@@ -11,6 +12,7 @@ PROMPTS["DEFAULT_ENTITY_TYPES"] = ["organization", "person", "geo", "event"]
PROMPTS["entity_extraction"] = """-Goal-
Given a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.
Use {language} as output language.
-Steps-
1. Identify all entities. For each identified entity, extract the following information:
@@ -38,7 +40,19 @@ Format the content-level key words as ("content_keywords"{tuple_delimiter}<high_
######################
-Examples-
######################
Example 1:
{examples}
#############################
-Real Data-
######################
Entity_types: {entity_types}
Text: {input_text}
######################
Output:
"""
PROMPTS["entity_extraction_examples"] = [
"""Example 1:
Entity_types: [person, technology, mission, organization, location]
Text:
@@ -62,8 +76,8 @@ Output:
("relationship"{tuple_delimiter}"Jordan"{tuple_delimiter}"Cruz"{tuple_delimiter}"Jordan's commitment to discovery is in rebellion against Cruz's vision of control and order."{tuple_delimiter}"ideological conflict, rebellion"{tuple_delimiter}5){record_delimiter}
("relationship"{tuple_delimiter}"Taylor"{tuple_delimiter}"The Device"{tuple_delimiter}"Taylor shows reverence towards the device, indicating its importance and potential impact."{tuple_delimiter}"reverence, technological significance"{tuple_delimiter}9){record_delimiter}
("content_keywords"{tuple_delimiter}"power dynamics, ideological conflict, discovery, rebellion"){completion_delimiter}
#############################
Example 2:
#############################""",
"""Example 2:
Entity_types: [person, technology, mission, organization, location]
Text:
@@ -80,8 +94,8 @@ Output:
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Washington"{tuple_delimiter}"The team receives communications from Washington, which influences their decision-making process."{tuple_delimiter}"decision-making, external influence"{tuple_delimiter}7){record_delimiter}
("relationship"{tuple_delimiter}"The team"{tuple_delimiter}"Operation: Dulce"{tuple_delimiter}"The team is directly involved in Operation: Dulce, executing its evolved objectives and activities."{tuple_delimiter}"mission evolution, active participation"{tuple_delimiter}9){completion_delimiter}
("content_keywords"{tuple_delimiter}"mission evolution, decision-making, active participation, cosmic significance"){completion_delimiter}
#############################
Example 3:
#############################""",
"""Example 3:
Entity_types: [person, role, technology, organization, event, location, concept]
Text:
@@ -107,22 +121,15 @@ Output:
("relationship"{tuple_delimiter}"Alex"{tuple_delimiter}"Humanity's Response"{tuple_delimiter}"Alex and his team are the key figures in Humanity's Response to the unknown intelligence."{tuple_delimiter}"collective action, cosmic significance"{tuple_delimiter}8){record_delimiter}
("relationship"{tuple_delimiter}"Control"{tuple_delimiter}"Intelligence"{tuple_delimiter}"The concept of Control is challenged by the Intelligence that writes its own rules."{tuple_delimiter}"power dynamics, autonomy"{tuple_delimiter}7){record_delimiter}
("content_keywords"{tuple_delimiter}"first contact, control, communication, cosmic significance"){completion_delimiter}
#############################
-Real Data-
######################
Entity_types: {entity_types}
Text: {input_text}
######################
Output:
"""
#############################"""
]
PROMPTS[
"summarize_entity_descriptions"
] = """You are a helpful assistant responsible for generating a comprehensive summary of the data provided below.
PROMPTS["summarize_entity_descriptions"] = """You are a helpful assistant responsible for generating a comprehensive summary of the data provided below.
Given one or two entities, and a list of descriptions, all related to the same entity or group of entities.
Please concatenate all of these into a single, comprehensive description. Make sure to include information collected from all the descriptions.
If the provided descriptions are contradictory, please resolve the contradictions and provide a single, coherent summary.
Make sure it is written in third person, and include the entity names so we the have full context.
Use Chinese as output language.
#######
-Data-
@@ -132,14 +139,10 @@ Description List: {description_list}
Output:
"""
PROMPTS[
"entiti_continue_extraction"
] = """MANY entities were missed in the last extraction. Add them below using the same format:
PROMPTS["entiti_continue_extraction"] = """MANY entities were missed in the last extraction. Add them below using the same format:
"""
PROMPTS[
"entiti_if_loop_extraction"
] = """It appears some entities may have still been missed. Answer YES | NO if there are still entities that need to be added.
PROMPTS["entiti_if_loop_extraction"] = """It appears some entities may have still been missed. Answer YES | NO if there are still entities that need to be added.
"""
PROMPTS["fail_response"] = "Sorry, I'm not able to provide an answer to that question."
@@ -169,6 +172,7 @@ Add sections and commentary to the response as appropriate for the length and fo
PROMPTS["keywords_extraction"] = """---Role---
You are a helpful assistant tasked with identifying both high-level and low-level keywords in the user's query.
Use Chinese as output language.
---Goal---
@@ -184,7 +188,20 @@ Given the query, list both high-level and low-level keywords. High-level keyword
######################
-Examples-
######################
Example 1:
{examples}
#############################
-Real Data-
######################
Query: {query}
######################
The `Output` should be human text, not unicode characters. Keep the same language as `Query`.
Output:
"""
PROMPTS["keywords_extraction_examples"] = [
"""Example 1:
Query: "How does international trade influence global economic stability?"
################
@@ -193,8 +210,8 @@ Output:
"high_level_keywords": ["International trade", "Global economic stability", "Economic impact"],
"low_level_keywords": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"]
}}
#############################
Example 2:
#############################""",
"""Example 2:
Query: "What are the environmental consequences of deforestation on biodiversity?"
################
@@ -203,8 +220,8 @@ Output:
"high_level_keywords": ["Environmental consequences", "Deforestation", "Biodiversity loss"],
"low_level_keywords": ["Species extinction", "Habitat destruction", "Carbon emissions", "Rainforest", "Ecosystem"]
}}
#############################
Example 3:
#############################""",
"""Example 3:
Query: "What is the role of education in reducing poverty?"
################
@@ -213,14 +230,9 @@ Output:
"high_level_keywords": ["Education", "Poverty reduction", "Socioeconomic development"],
"low_level_keywords": ["School access", "Literacy rates", "Job training", "Income inequality"]
}}
#############################
-Real Data-
######################
Query: {query}
######################
Output:
#############################"""
]
"""
PROMPTS["naive_rag_response"] = """---Role---

View File

@@ -47,14 +47,26 @@ class EmbeddingFunc:
def locate_json_string_body_from_string(content: str) -> Union[str, None]:
"""Locate the JSON string body from a string"""
maybe_json_str = re.search(r"{.*}", content, re.DOTALL)
if maybe_json_str is not None:
maybe_json_str = maybe_json_str.group(0)
maybe_json_str = maybe_json_str.replace("\\n", "")
maybe_json_str = maybe_json_str.replace("\n", "")
maybe_json_str = maybe_json_str.replace("'", '"')
return maybe_json_str
else:
try:
maybe_json_str = re.search(r"{.*}", content, re.DOTALL)
if maybe_json_str is not None:
maybe_json_str = maybe_json_str.group(0)
maybe_json_str = maybe_json_str.replace("\\n", "")
maybe_json_str = maybe_json_str.replace("\n", "")
maybe_json_str = maybe_json_str.replace("'", '"')
json.loads(maybe_json_str)
return maybe_json_str
except:
# try:
# content = (
# content.replace(kw_prompt[:-1], "")
# .replace("user", "")
# .replace("model", "")
# .strip()
# )
# maybe_json_str = "{" + content.split("{")[1].split("}")[0] + "}"
# json.loads(maybe_json_str)
return None