Add LlamaIndex Wrapper and Example Implementations
- Updated README.md with new Wrappers section detailing LlamaIndex integration - Added LlamaIndex wrapper implementation in `lightrag/wrapper/llama_index_impl.py` - Created two example scripts demonstrating LlamaIndex usage: - Direct OpenAI integration - LiteLLM proxy integration - Added wrapper documentation in `lightrag/wrapper/Readme.md` - Included comprehensive usage examples and configuration details
This commit is contained in:
98
examples/lightrag_api_llamaindex_direct_demo_simplified.py
Normal file
98
examples/lightrag_api_llamaindex_direct_demo_simplified.py
Normal file
@@ -0,0 +1,98 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.wrapper.llama_index_impl import llama_index_complete_if_cache, llama_index_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
from llama_index.llms.openai import OpenAI
|
||||
from llama_index.embeddings.openai import OpenAIEmbedding
|
||||
import asyncio
|
||||
|
||||
# Configure working directory
|
||||
DEFAULT_RAG_DIR = "index_default"
|
||||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
||||
print(f"WORKING_DIR: {WORKING_DIR}")
|
||||
|
||||
# Model configuration
|
||||
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4")
|
||||
print(f"LLM_MODEL: {LLM_MODEL}")
|
||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-small")
|
||||
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
||||
|
||||
# OpenAI configuration
|
||||
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "your-api-key-here")
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
# Initialize LLM function
|
||||
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
|
||||
try:
|
||||
# Initialize OpenAI if not in kwargs
|
||||
if 'llm_instance' not in kwargs:
|
||||
llm_instance = OpenAI(
|
||||
model=LLM_MODEL,
|
||||
api_key=OPENAI_API_KEY,
|
||||
temperature=0.7,
|
||||
)
|
||||
kwargs['llm_instance'] = llm_instance
|
||||
|
||||
response = await llama_index_complete_if_cache(
|
||||
kwargs['llm_instance'],
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
return response
|
||||
except Exception as e:
|
||||
print(f"LLM request failed: {str(e)}")
|
||||
raise
|
||||
|
||||
# Initialize embedding function
|
||||
async def embedding_func(texts):
|
||||
try:
|
||||
embed_model = OpenAIEmbedding(
|
||||
model=EMBEDDING_MODEL,
|
||||
api_key=OPENAI_API_KEY,
|
||||
)
|
||||
return await llama_index_embed(texts, embed_model=embed_model)
|
||||
except Exception as e:
|
||||
print(f"Embedding failed: {str(e)}")
|
||||
raise
|
||||
|
||||
# Get embedding dimension
|
||||
async def get_embedding_dim():
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await embedding_func(test_text)
|
||||
embedding_dim = embedding.shape[1]
|
||||
print(f"embedding_dim={embedding_dim}")
|
||||
return embedding_dim
|
||||
|
||||
# Initialize RAG instance
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=asyncio.run(get_embedding_dim()),
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
# Insert example text
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Test different query modes
|
||||
print("\nNaive Search:")
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
|
||||
print("\nLocal Search:")
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
|
||||
print("\nGlobal Search:")
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
|
||||
print("\nHybrid Search:")
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
Reference in New Issue
Block a user