Add faiss integration for storage
This commit is contained in:
29
README.md
29
README.md
@@ -465,7 +465,36 @@ For production level scenarios you will most likely want to leverage an enterpri
|
|||||||
>
|
>
|
||||||
> You can Compile the AGE from source code and fix it.
|
> You can Compile the AGE from source code and fix it.
|
||||||
|
|
||||||
|
### Using Faiss for Storage
|
||||||
|
- Install the required dependencies:
|
||||||
|
```
|
||||||
|
pip install faiss-cpu
|
||||||
|
```
|
||||||
|
You can also install `faiss-gpu` if you have GPU support.
|
||||||
|
|
||||||
|
- Here we are using `sentence-transformers` but you can also use `OpenAIEmbedding` model with `3072` dimensions.
|
||||||
|
|
||||||
|
```
|
||||||
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||||
|
model = SentenceTransformer('all-MiniLM-L6-v2')
|
||||||
|
embeddings = model.encode(texts, convert_to_numpy=True)
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
# Initialize LightRAG with the LLM model function and embedding function
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=llm_model_func,
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=384,
|
||||||
|
max_token_size=8192,
|
||||||
|
func=embedding_func,
|
||||||
|
),
|
||||||
|
vector_storage="FaissVectorDBStorage",
|
||||||
|
vector_db_storage_cls_kwargs={
|
||||||
|
"cosine_better_than_threshold": 0.3 # Your desired threshold
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
### Insert Custom KG
|
### Insert Custom KG
|
||||||
|
|
||||||
|
104
examples/test_faiss.py
Normal file
104
examples/test_faiss.py
Normal file
@@ -0,0 +1,104 @@
|
|||||||
|
import os
|
||||||
|
import logging
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
|
||||||
|
from openai import AzureOpenAI
|
||||||
|
from lightrag import LightRAG, QueryParam
|
||||||
|
from lightrag.utils import EmbeddingFunc
|
||||||
|
from lightrag.kg.faiss_impl import FaissVectorDBStorage
|
||||||
|
|
||||||
|
# Configure Logging
|
||||||
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
|
||||||
|
# Load environment variables from .env file
|
||||||
|
load_dotenv()
|
||||||
|
AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION")
|
||||||
|
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
|
||||||
|
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
||||||
|
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
||||||
|
|
||||||
|
async def llm_model_func(
|
||||||
|
prompt,
|
||||||
|
system_prompt=None,
|
||||||
|
history_messages=[],
|
||||||
|
keyword_extraction=False,
|
||||||
|
**kwargs
|
||||||
|
) -> str:
|
||||||
|
|
||||||
|
# Create a client for AzureOpenAI
|
||||||
|
client = AzureOpenAI(
|
||||||
|
api_key=AZURE_OPENAI_API_KEY,
|
||||||
|
api_version=AZURE_OPENAI_API_VERSION,
|
||||||
|
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Build the messages list for the conversation
|
||||||
|
messages = []
|
||||||
|
if system_prompt:
|
||||||
|
messages.append({"role": "system", "content": system_prompt})
|
||||||
|
if history_messages:
|
||||||
|
messages.extend(history_messages)
|
||||||
|
messages.append({"role": "user", "content": prompt})
|
||||||
|
|
||||||
|
# Call the LLM
|
||||||
|
chat_completion = client.chat.completions.create(
|
||||||
|
model=AZURE_OPENAI_DEPLOYMENT,
|
||||||
|
messages=messages,
|
||||||
|
temperature=kwargs.get("temperature", 0),
|
||||||
|
top_p=kwargs.get("top_p", 1),
|
||||||
|
n=kwargs.get("n", 1),
|
||||||
|
)
|
||||||
|
|
||||||
|
return chat_completion.choices[0].message.content
|
||||||
|
|
||||||
|
|
||||||
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||||
|
model = SentenceTransformer('all-MiniLM-L6-v2')
|
||||||
|
embeddings = model.encode(texts, convert_to_numpy=True)
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
def main():
|
||||||
|
|
||||||
|
WORKING_DIR = "./dickens"
|
||||||
|
|
||||||
|
# Initialize LightRAG with the LLM model function and embedding function
|
||||||
|
rag = LightRAG(
|
||||||
|
working_dir=WORKING_DIR,
|
||||||
|
llm_model_func=llm_model_func,
|
||||||
|
embedding_func=EmbeddingFunc(
|
||||||
|
embedding_dim=384,
|
||||||
|
max_token_size=8192,
|
||||||
|
func=embedding_func,
|
||||||
|
),
|
||||||
|
vector_storage="FaissVectorDBStorage",
|
||||||
|
vector_db_storage_cls_kwargs={
|
||||||
|
"cosine_better_than_threshold": 0.3 # Your desired threshold
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Insert the custom chunks into LightRAG
|
||||||
|
book1 = open("./book_1.txt", encoding="utf-8")
|
||||||
|
book2 = open("./book_2.txt", encoding="utf-8")
|
||||||
|
|
||||||
|
rag.insert([book1.read(), book2.read()])
|
||||||
|
|
||||||
|
query_text = "What are the main themes?"
|
||||||
|
|
||||||
|
print("Result (Naive):")
|
||||||
|
print(rag.query(query_text, param=QueryParam(mode="naive")))
|
||||||
|
|
||||||
|
print("\nResult (Local):")
|
||||||
|
print(rag.query(query_text, param=QueryParam(mode="local")))
|
||||||
|
|
||||||
|
print("\nResult (Global):")
|
||||||
|
print(rag.query(query_text, param=QueryParam(mode="global")))
|
||||||
|
|
||||||
|
print("\nResult (Hybrid):")
|
||||||
|
print(rag.query(query_text, param=QueryParam(mode="hybrid")))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
318
lightrag/kg/faiss_impl.py
Normal file
318
lightrag/kg/faiss_impl.py
Normal file
@@ -0,0 +1,318 @@
|
|||||||
|
import os
|
||||||
|
import time
|
||||||
|
import asyncio
|
||||||
|
import faiss
|
||||||
|
import json
|
||||||
|
import numpy as np
|
||||||
|
from tqdm.asyncio import tqdm as tqdm_async
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
from lightrag.utils import (
|
||||||
|
logger,
|
||||||
|
compute_mdhash_id,
|
||||||
|
)
|
||||||
|
from lightrag.base import (
|
||||||
|
BaseVectorStorage,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class FaissVectorDBStorage(BaseVectorStorage):
|
||||||
|
"""
|
||||||
|
A Faiss-based Vector DB Storage for LightRAG.
|
||||||
|
Uses cosine similarity by storing normalized vectors in a Faiss index with inner product search.
|
||||||
|
"""
|
||||||
|
cosine_better_than_threshold: float = float(os.getenv("COSINE_THRESHOLD", "0.2"))
|
||||||
|
|
||||||
|
def __post_init__(self):
|
||||||
|
# Grab config values if available
|
||||||
|
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
||||||
|
self.cosine_better_than_threshold = config.get(
|
||||||
|
"cosine_better_than_threshold", self.cosine_better_than_threshold
|
||||||
|
)
|
||||||
|
|
||||||
|
# Where to save index file if you want persistent storage
|
||||||
|
self._faiss_index_file = os.path.join(
|
||||||
|
self.global_config["working_dir"], f"faiss_index_{self.namespace}.index"
|
||||||
|
)
|
||||||
|
self._meta_file = self._faiss_index_file + ".meta.json"
|
||||||
|
|
||||||
|
self._max_batch_size = self.global_config["embedding_batch_num"]
|
||||||
|
# Embedding dimension (e.g. 768) must match your embedding function
|
||||||
|
self._dim = self.embedding_func.embedding_dim
|
||||||
|
|
||||||
|
# Create an empty Faiss index for inner product (useful for normalized vectors = cosine similarity).
|
||||||
|
# If you have a large number of vectors, you might want IVF or other indexes.
|
||||||
|
# For demonstration, we use a simple IndexFlatIP.
|
||||||
|
self._index = faiss.IndexFlatIP(self._dim)
|
||||||
|
|
||||||
|
# Keep a local store for metadata, IDs, etc.
|
||||||
|
# Maps <int faiss_id> → metadata (including your original ID).
|
||||||
|
self._id_to_meta = {}
|
||||||
|
|
||||||
|
# Attempt to load an existing index + metadata from disk
|
||||||
|
self._load_faiss_index()
|
||||||
|
|
||||||
|
async def upsert(self, data: dict[str, dict]):
|
||||||
|
"""
|
||||||
|
Insert or update vectors in the Faiss index.
|
||||||
|
|
||||||
|
data: {
|
||||||
|
"custom_id_1": {
|
||||||
|
"content": <text>,
|
||||||
|
...metadata...
|
||||||
|
},
|
||||||
|
"custom_id_2": {
|
||||||
|
"content": <text>,
|
||||||
|
...metadata...
|
||||||
|
},
|
||||||
|
...
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
||||||
|
if not data:
|
||||||
|
logger.warning("You are inserting empty data to the vector DB")
|
||||||
|
return []
|
||||||
|
|
||||||
|
current_time = time.time()
|
||||||
|
|
||||||
|
# Prepare data for embedding
|
||||||
|
list_data = []
|
||||||
|
contents = []
|
||||||
|
for k, v in data.items():
|
||||||
|
# Store only known meta fields if needed
|
||||||
|
meta = {mf: v[mf] for mf in self.meta_fields if mf in v}
|
||||||
|
meta["__id__"] = k
|
||||||
|
meta["__created_at__"] = current_time
|
||||||
|
list_data.append(meta)
|
||||||
|
contents.append(v["content"])
|
||||||
|
|
||||||
|
# Split into batches for embedding if needed
|
||||||
|
batches = [
|
||||||
|
contents[i : i + self._max_batch_size]
|
||||||
|
for i in range(0, len(contents), self._max_batch_size)
|
||||||
|
]
|
||||||
|
|
||||||
|
pbar = tqdm_async(total=len(batches), desc="Generating embeddings", unit="batch")
|
||||||
|
|
||||||
|
async def wrapped_task(batch):
|
||||||
|
result = await self.embedding_func(batch)
|
||||||
|
pbar.update(1)
|
||||||
|
return result
|
||||||
|
|
||||||
|
embedding_tasks = [wrapped_task(batch) for batch in batches]
|
||||||
|
embeddings_list = await asyncio.gather(*embedding_tasks)
|
||||||
|
|
||||||
|
# Flatten the list of arrays
|
||||||
|
embeddings = np.concatenate(embeddings_list, axis=0)
|
||||||
|
if len(embeddings) != len(list_data):
|
||||||
|
logger.error(
|
||||||
|
f"Embedding size mismatch. Embeddings: {len(embeddings)}, Data: {len(list_data)}"
|
||||||
|
)
|
||||||
|
return []
|
||||||
|
|
||||||
|
# Normalize embeddings for cosine similarity (in-place)
|
||||||
|
faiss.normalize_L2(embeddings)
|
||||||
|
|
||||||
|
# Upsert logic:
|
||||||
|
# 1. Identify which vectors to remove if they exist
|
||||||
|
# 2. Remove them
|
||||||
|
# 3. Add the new vectors
|
||||||
|
existing_ids_to_remove = []
|
||||||
|
for meta, emb in zip(list_data, embeddings):
|
||||||
|
faiss_internal_id = self._find_faiss_id_by_custom_id(meta["__id__"])
|
||||||
|
if faiss_internal_id is not None:
|
||||||
|
existing_ids_to_remove.append(faiss_internal_id)
|
||||||
|
|
||||||
|
if existing_ids_to_remove:
|
||||||
|
self._remove_faiss_ids(existing_ids_to_remove)
|
||||||
|
|
||||||
|
# Step 2: Add new vectors
|
||||||
|
start_idx = self._index.ntotal
|
||||||
|
self._index.add(embeddings)
|
||||||
|
|
||||||
|
# Step 3: Store metadata + vector for each new ID
|
||||||
|
for i, meta in enumerate(list_data):
|
||||||
|
fid = start_idx + i
|
||||||
|
# Store the raw vector so we can rebuild if something is removed
|
||||||
|
meta["__vector__"] = embeddings[i].tolist()
|
||||||
|
self._id_to_meta[fid] = meta
|
||||||
|
|
||||||
|
logger.info(f"Upserted {len(list_data)} vectors into Faiss index.")
|
||||||
|
return [m["__id__"] for m in list_data]
|
||||||
|
|
||||||
|
async def query(self, query: str, top_k=5):
|
||||||
|
"""
|
||||||
|
Search by a textual query; returns top_k results with their metadata + similarity distance.
|
||||||
|
"""
|
||||||
|
embedding = await self.embedding_func([query])
|
||||||
|
# embedding is shape (1, dim)
|
||||||
|
embedding = np.array(embedding, dtype=np.float32)
|
||||||
|
faiss.normalize_L2(embedding) # we do in-place normalization
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Query: {query}, top_k: {top_k}, threshold: {self.cosine_better_than_threshold}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Perform the similarity search
|
||||||
|
distances, indices = self._index.search(embedding, top_k)
|
||||||
|
|
||||||
|
distances = distances[0]
|
||||||
|
indices = indices[0]
|
||||||
|
|
||||||
|
results = []
|
||||||
|
for dist, idx in zip(distances, indices):
|
||||||
|
if idx == -1:
|
||||||
|
# Faiss returns -1 if no neighbor
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Cosine similarity threshold
|
||||||
|
if dist < self.cosine_better_than_threshold:
|
||||||
|
continue
|
||||||
|
|
||||||
|
meta = self._id_to_meta.get(idx, {})
|
||||||
|
results.append(
|
||||||
|
{
|
||||||
|
**meta,
|
||||||
|
"id": meta.get("__id__"),
|
||||||
|
"distance": float(dist),
|
||||||
|
"created_at": meta.get("__created_at__"),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
@property
|
||||||
|
def client_storage(self):
|
||||||
|
# Return whatever structure LightRAG might need for debugging
|
||||||
|
return {"data": list(self._id_to_meta.values())}
|
||||||
|
|
||||||
|
async def delete(self, ids: list[str]):
|
||||||
|
"""
|
||||||
|
Delete vectors for the provided custom IDs.
|
||||||
|
"""
|
||||||
|
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
|
||||||
|
to_remove = []
|
||||||
|
for cid in ids:
|
||||||
|
fid = self._find_faiss_id_by_custom_id(cid)
|
||||||
|
if fid is not None:
|
||||||
|
to_remove.append(fid)
|
||||||
|
|
||||||
|
if to_remove:
|
||||||
|
self._remove_faiss_ids(to_remove)
|
||||||
|
logger.info(f"Successfully deleted {len(to_remove)} vectors from {self.namespace}")
|
||||||
|
|
||||||
|
async def delete_entity(self, entity_name: str):
|
||||||
|
"""
|
||||||
|
Delete a single entity by computing its hashed ID
|
||||||
|
the same way your code does it with `compute_mdhash_id`.
|
||||||
|
"""
|
||||||
|
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
|
||||||
|
logger.debug(f"Attempting to delete entity {entity_name} with ID {entity_id}")
|
||||||
|
await self.delete([entity_id])
|
||||||
|
|
||||||
|
async def delete_entity_relation(self, entity_name: str):
|
||||||
|
"""
|
||||||
|
Delete relations for a given entity by scanning metadata.
|
||||||
|
"""
|
||||||
|
logger.debug(f"Searching relations for entity {entity_name}")
|
||||||
|
relations = []
|
||||||
|
for fid, meta in self._id_to_meta.items():
|
||||||
|
if meta.get("src_id") == entity_name or meta.get("tgt_id") == entity_name:
|
||||||
|
relations.append(fid)
|
||||||
|
|
||||||
|
logger.debug(f"Found {len(relations)} relations for {entity_name}")
|
||||||
|
if relations:
|
||||||
|
self._remove_faiss_ids(relations)
|
||||||
|
logger.debug(f"Deleted {len(relations)} relations for {entity_name}")
|
||||||
|
|
||||||
|
async def index_done_callback(self):
|
||||||
|
"""
|
||||||
|
Called after indexing is done (save Faiss index + metadata).
|
||||||
|
"""
|
||||||
|
self._save_faiss_index()
|
||||||
|
logger.info("Faiss index saved successfully.")
|
||||||
|
|
||||||
|
# --------------------------------------------------------------------------------
|
||||||
|
# Internal helper methods
|
||||||
|
# --------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
def _find_faiss_id_by_custom_id(self, custom_id: str):
|
||||||
|
"""
|
||||||
|
Return the Faiss internal ID for a given custom ID, or None if not found.
|
||||||
|
"""
|
||||||
|
for fid, meta in self._id_to_meta.items():
|
||||||
|
if meta.get("__id__") == custom_id:
|
||||||
|
return fid
|
||||||
|
return None
|
||||||
|
|
||||||
|
def _remove_faiss_ids(self, fid_list):
|
||||||
|
"""
|
||||||
|
Remove a list of internal Faiss IDs from the index.
|
||||||
|
Because IndexFlatIP doesn't support 'removals',
|
||||||
|
we rebuild the index excluding those vectors.
|
||||||
|
"""
|
||||||
|
keep_fids = [fid for fid in self._id_to_meta if fid not in fid_list]
|
||||||
|
|
||||||
|
# Rebuild the index
|
||||||
|
vectors_to_keep = []
|
||||||
|
new_id_to_meta = {}
|
||||||
|
for new_fid, old_fid in enumerate(keep_fids):
|
||||||
|
vec_meta = self._id_to_meta[old_fid]
|
||||||
|
vectors_to_keep.append(vec_meta["__vector__"]) # stored as list
|
||||||
|
new_id_to_meta[new_fid] = vec_meta
|
||||||
|
|
||||||
|
# Re-init index
|
||||||
|
self._index = faiss.IndexFlatIP(self._dim)
|
||||||
|
if vectors_to_keep:
|
||||||
|
arr = np.array(vectors_to_keep, dtype=np.float32)
|
||||||
|
self._index.add(arr)
|
||||||
|
|
||||||
|
self._id_to_meta = new_id_to_meta
|
||||||
|
|
||||||
|
def _save_faiss_index(self):
|
||||||
|
"""
|
||||||
|
Save the current Faiss index + metadata to disk so it can persist across runs.
|
||||||
|
"""
|
||||||
|
faiss.write_index(self._index, self._faiss_index_file)
|
||||||
|
|
||||||
|
# Save metadata dict to JSON. Convert all keys to strings for JSON storage.
|
||||||
|
# _id_to_meta is { int: { '__id__': doc_id, '__vector__': [float,...], ... } }
|
||||||
|
# We'll keep the int -> dict, but JSON requires string keys.
|
||||||
|
serializable_dict = {}
|
||||||
|
for fid, meta in self._id_to_meta.items():
|
||||||
|
serializable_dict[str(fid)] = meta
|
||||||
|
|
||||||
|
with open(self._meta_file, "w", encoding="utf-8") as f:
|
||||||
|
json.dump(serializable_dict, f)
|
||||||
|
|
||||||
|
def _load_faiss_index(self):
|
||||||
|
"""
|
||||||
|
Load the Faiss index + metadata from disk if it exists,
|
||||||
|
and rebuild in-memory structures so we can query.
|
||||||
|
"""
|
||||||
|
if not os.path.exists(self._faiss_index_file):
|
||||||
|
logger.warning("No existing Faiss index file found. Starting fresh.")
|
||||||
|
return
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Load the Faiss index
|
||||||
|
self._index = faiss.read_index(self._faiss_index_file)
|
||||||
|
# Load metadata
|
||||||
|
with open(self._meta_file, "r", encoding="utf-8") as f:
|
||||||
|
stored_dict = json.load(f)
|
||||||
|
|
||||||
|
# Convert string keys back to int
|
||||||
|
self._id_to_meta = {}
|
||||||
|
for fid_str, meta in stored_dict.items():
|
||||||
|
fid = int(fid_str)
|
||||||
|
self._id_to_meta[fid] = meta
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Faiss index loaded with {self._index.ntotal} vectors from {self._faiss_index_file}"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to load Faiss index or metadata: {e}")
|
||||||
|
logger.warning("Starting with an empty Faiss index.")
|
||||||
|
self._index = faiss.IndexFlatIP(self._dim)
|
||||||
|
self._id_to_meta = {}
|
@@ -60,6 +60,7 @@ STORAGES = {
|
|||||||
"PGGraphStorage": ".kg.postgres_impl",
|
"PGGraphStorage": ".kg.postgres_impl",
|
||||||
"GremlinStorage": ".kg.gremlin_impl",
|
"GremlinStorage": ".kg.gremlin_impl",
|
||||||
"PGDocStatusStorage": ".kg.postgres_impl",
|
"PGDocStatusStorage": ".kg.postgres_impl",
|
||||||
|
"FaissVectorDBStorage": ".kg.faiss_impl",
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user