Fix LLM cache now work for nodes and edges merging
This commit is contained in:
@@ -1 +1 @@
|
|||||||
__api_version__ = "0142"
|
__api_version__ = "0143"
|
||||||
|
@@ -24,8 +24,8 @@ from .utils import (
|
|||||||
handle_cache,
|
handle_cache,
|
||||||
save_to_cache,
|
save_to_cache,
|
||||||
CacheData,
|
CacheData,
|
||||||
statistic_data,
|
|
||||||
get_conversation_turns,
|
get_conversation_turns,
|
||||||
|
use_llm_func_with_cache,
|
||||||
)
|
)
|
||||||
from .base import (
|
from .base import (
|
||||||
BaseGraphStorage,
|
BaseGraphStorage,
|
||||||
@@ -108,6 +108,7 @@ async def _handle_entity_relation_summary(
|
|||||||
global_config: dict,
|
global_config: dict,
|
||||||
pipeline_status: dict = None,
|
pipeline_status: dict = None,
|
||||||
pipeline_status_lock=None,
|
pipeline_status_lock=None,
|
||||||
|
llm_response_cache: BaseKVStorage | None = None,
|
||||||
) -> str:
|
) -> str:
|
||||||
"""Handle entity relation summary
|
"""Handle entity relation summary
|
||||||
For each entity or relation, input is the combined description of already existing description and new description.
|
For each entity or relation, input is the combined description of already existing description and new description.
|
||||||
@@ -125,13 +126,6 @@ async def _handle_entity_relation_summary(
|
|||||||
if len(tokens) < summary_max_tokens: # No need for summary
|
if len(tokens) < summary_max_tokens: # No need for summary
|
||||||
return description
|
return description
|
||||||
|
|
||||||
# Update pipeline status when LLM summary is needed
|
|
||||||
status_message = "Use LLM to re-summary description..."
|
|
||||||
logger.info(status_message)
|
|
||||||
if pipeline_status is not None and pipeline_status_lock is not None:
|
|
||||||
async with pipeline_status_lock:
|
|
||||||
pipeline_status["latest_message"] = status_message
|
|
||||||
pipeline_status["history_messages"].append(status_message)
|
|
||||||
prompt_template = PROMPTS["summarize_entity_descriptions"]
|
prompt_template = PROMPTS["summarize_entity_descriptions"]
|
||||||
use_description = decode_tokens_by_tiktoken(
|
use_description = decode_tokens_by_tiktoken(
|
||||||
tokens[:llm_max_tokens], model_name=tiktoken_model_name
|
tokens[:llm_max_tokens], model_name=tiktoken_model_name
|
||||||
@@ -143,7 +137,23 @@ async def _handle_entity_relation_summary(
|
|||||||
)
|
)
|
||||||
use_prompt = prompt_template.format(**context_base)
|
use_prompt = prompt_template.format(**context_base)
|
||||||
logger.debug(f"Trigger summary: {entity_or_relation_name}")
|
logger.debug(f"Trigger summary: {entity_or_relation_name}")
|
||||||
summary = await use_llm_func(use_prompt, max_tokens=summary_max_tokens)
|
|
||||||
|
# Update pipeline status when LLM summary is needed
|
||||||
|
status_message = "Use LLM to re-summary description..."
|
||||||
|
logger.info(status_message)
|
||||||
|
if pipeline_status is not None and pipeline_status_lock is not None:
|
||||||
|
async with pipeline_status_lock:
|
||||||
|
pipeline_status["latest_message"] = status_message
|
||||||
|
pipeline_status["history_messages"].append(status_message)
|
||||||
|
|
||||||
|
# Use LLM function with cache
|
||||||
|
summary = await use_llm_func_with_cache(
|
||||||
|
use_prompt,
|
||||||
|
use_llm_func,
|
||||||
|
llm_response_cache=llm_response_cache,
|
||||||
|
max_tokens=summary_max_tokens,
|
||||||
|
cache_type="extract",
|
||||||
|
)
|
||||||
return summary
|
return summary
|
||||||
|
|
||||||
|
|
||||||
@@ -224,6 +234,7 @@ async def _merge_nodes_then_upsert(
|
|||||||
global_config: dict,
|
global_config: dict,
|
||||||
pipeline_status: dict = None,
|
pipeline_status: dict = None,
|
||||||
pipeline_status_lock=None,
|
pipeline_status_lock=None,
|
||||||
|
llm_response_cache: BaseKVStorage | None = None,
|
||||||
):
|
):
|
||||||
"""Get existing nodes from knowledge graph use name,if exists, merge data, else create, then upsert."""
|
"""Get existing nodes from knowledge graph use name,if exists, merge data, else create, then upsert."""
|
||||||
already_entity_types = []
|
already_entity_types = []
|
||||||
@@ -269,7 +280,12 @@ async def _merge_nodes_then_upsert(
|
|||||||
|
|
||||||
logger.debug(f"file_path: {file_path}")
|
logger.debug(f"file_path: {file_path}")
|
||||||
description = await _handle_entity_relation_summary(
|
description = await _handle_entity_relation_summary(
|
||||||
entity_name, description, global_config, pipeline_status, pipeline_status_lock
|
entity_name,
|
||||||
|
description,
|
||||||
|
global_config,
|
||||||
|
pipeline_status,
|
||||||
|
pipeline_status_lock,
|
||||||
|
llm_response_cache,
|
||||||
)
|
)
|
||||||
node_data = dict(
|
node_data = dict(
|
||||||
entity_id=entity_name,
|
entity_id=entity_name,
|
||||||
@@ -294,6 +310,7 @@ async def _merge_edges_then_upsert(
|
|||||||
global_config: dict,
|
global_config: dict,
|
||||||
pipeline_status: dict = None,
|
pipeline_status: dict = None,
|
||||||
pipeline_status_lock=None,
|
pipeline_status_lock=None,
|
||||||
|
llm_response_cache: BaseKVStorage | None = None,
|
||||||
):
|
):
|
||||||
already_weights = []
|
already_weights = []
|
||||||
already_source_ids = []
|
already_source_ids = []
|
||||||
@@ -393,6 +410,7 @@ async def _merge_edges_then_upsert(
|
|||||||
global_config,
|
global_config,
|
||||||
pipeline_status,
|
pipeline_status,
|
||||||
pipeline_status_lock,
|
pipeline_status_lock,
|
||||||
|
llm_response_cache,
|
||||||
)
|
)
|
||||||
await knowledge_graph_inst.upsert_edge(
|
await knowledge_graph_inst.upsert_edge(
|
||||||
src_id,
|
src_id,
|
||||||
@@ -428,11 +446,9 @@ async def extract_entities(
|
|||||||
pipeline_status_lock=None,
|
pipeline_status_lock=None,
|
||||||
llm_response_cache: BaseKVStorage | None = None,
|
llm_response_cache: BaseKVStorage | None = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
|
|
||||||
use_llm_func: callable = global_config["llm_model_func"]
|
use_llm_func: callable = global_config["llm_model_func"]
|
||||||
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
||||||
enable_llm_cache_for_entity_extract: bool = global_config[
|
|
||||||
"enable_llm_cache_for_entity_extract"
|
|
||||||
]
|
|
||||||
|
|
||||||
ordered_chunks = list(chunks.items())
|
ordered_chunks = list(chunks.items())
|
||||||
# add language and example number params to prompt
|
# add language and example number params to prompt
|
||||||
@@ -483,51 +499,7 @@ async def extract_entities(
|
|||||||
|
|
||||||
graph_db_lock = get_graph_db_lock(enable_logging=False)
|
graph_db_lock = get_graph_db_lock(enable_logging=False)
|
||||||
|
|
||||||
async def _user_llm_func_with_cache(
|
# Use the global use_llm_func_with_cache function from utils.py
|
||||||
input_text: str, history_messages: list[dict[str, str]] = None
|
|
||||||
) -> str:
|
|
||||||
if enable_llm_cache_for_entity_extract and llm_response_cache:
|
|
||||||
if history_messages:
|
|
||||||
history = json.dumps(history_messages, ensure_ascii=False)
|
|
||||||
_prompt = history + "\n" + input_text
|
|
||||||
else:
|
|
||||||
_prompt = input_text
|
|
||||||
|
|
||||||
# TODO: add cache_type="extract"
|
|
||||||
arg_hash = compute_args_hash(_prompt)
|
|
||||||
cached_return, _1, _2, _3 = await handle_cache(
|
|
||||||
llm_response_cache,
|
|
||||||
arg_hash,
|
|
||||||
_prompt,
|
|
||||||
"default",
|
|
||||||
cache_type="extract",
|
|
||||||
)
|
|
||||||
if cached_return:
|
|
||||||
logger.debug(f"Found cache for {arg_hash}")
|
|
||||||
statistic_data["llm_cache"] += 1
|
|
||||||
return cached_return
|
|
||||||
statistic_data["llm_call"] += 1
|
|
||||||
if history_messages:
|
|
||||||
res: str = await use_llm_func(
|
|
||||||
input_text, history_messages=history_messages
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
res: str = await use_llm_func(input_text)
|
|
||||||
await save_to_cache(
|
|
||||||
llm_response_cache,
|
|
||||||
CacheData(
|
|
||||||
args_hash=arg_hash,
|
|
||||||
content=res,
|
|
||||||
prompt=_prompt,
|
|
||||||
cache_type="extract",
|
|
||||||
),
|
|
||||||
)
|
|
||||||
return res
|
|
||||||
|
|
||||||
if history_messages:
|
|
||||||
return await use_llm_func(input_text, history_messages=history_messages)
|
|
||||||
else:
|
|
||||||
return await use_llm_func(input_text)
|
|
||||||
|
|
||||||
async def _process_extraction_result(
|
async def _process_extraction_result(
|
||||||
result: str, chunk_key: str, file_path: str = "unknown_source"
|
result: str, chunk_key: str, file_path: str = "unknown_source"
|
||||||
@@ -592,7 +564,12 @@ async def extract_entities(
|
|||||||
**context_base, input_text="{input_text}"
|
**context_base, input_text="{input_text}"
|
||||||
).format(**context_base, input_text=content)
|
).format(**context_base, input_text=content)
|
||||||
|
|
||||||
final_result = await _user_llm_func_with_cache(hint_prompt)
|
final_result = await use_llm_func_with_cache(
|
||||||
|
hint_prompt,
|
||||||
|
use_llm_func,
|
||||||
|
llm_response_cache=llm_response_cache,
|
||||||
|
cache_type="extract",
|
||||||
|
)
|
||||||
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
||||||
|
|
||||||
# Process initial extraction with file path
|
# Process initial extraction with file path
|
||||||
@@ -602,8 +579,12 @@ async def extract_entities(
|
|||||||
|
|
||||||
# Process additional gleaning results
|
# Process additional gleaning results
|
||||||
for now_glean_index in range(entity_extract_max_gleaning):
|
for now_glean_index in range(entity_extract_max_gleaning):
|
||||||
glean_result = await _user_llm_func_with_cache(
|
glean_result = await use_llm_func_with_cache(
|
||||||
continue_prompt, history_messages=history
|
continue_prompt,
|
||||||
|
use_llm_func,
|
||||||
|
llm_response_cache=llm_response_cache,
|
||||||
|
history_messages=history,
|
||||||
|
cache_type="extract",
|
||||||
)
|
)
|
||||||
|
|
||||||
history += pack_user_ass_to_openai_messages(continue_prompt, glean_result)
|
history += pack_user_ass_to_openai_messages(continue_prompt, glean_result)
|
||||||
@@ -622,8 +603,12 @@ async def extract_entities(
|
|||||||
if now_glean_index == entity_extract_max_gleaning - 1:
|
if now_glean_index == entity_extract_max_gleaning - 1:
|
||||||
break
|
break
|
||||||
|
|
||||||
if_loop_result: str = await _user_llm_func_with_cache(
|
if_loop_result: str = await use_llm_func_with_cache(
|
||||||
if_loop_prompt, history_messages=history
|
if_loop_prompt,
|
||||||
|
use_llm_func,
|
||||||
|
llm_response_cache=llm_response_cache,
|
||||||
|
history_messages=history,
|
||||||
|
cache_type="extract",
|
||||||
)
|
)
|
||||||
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
|
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
|
||||||
if if_loop_result != "yes":
|
if if_loop_result != "yes":
|
||||||
@@ -653,6 +638,7 @@ async def extract_entities(
|
|||||||
global_config,
|
global_config,
|
||||||
pipeline_status,
|
pipeline_status,
|
||||||
pipeline_status_lock,
|
pipeline_status_lock,
|
||||||
|
llm_response_cache,
|
||||||
)
|
)
|
||||||
chunk_entities_data.append(entity_data)
|
chunk_entities_data.append(entity_data)
|
||||||
|
|
||||||
@@ -668,6 +654,7 @@ async def extract_entities(
|
|||||||
global_config,
|
global_config,
|
||||||
pipeline_status,
|
pipeline_status,
|
||||||
pipeline_status_lock,
|
pipeline_status_lock,
|
||||||
|
llm_response_cache,
|
||||||
)
|
)
|
||||||
chunk_relationships_data.append(edge_data)
|
chunk_relationships_data.append(edge_data)
|
||||||
|
|
||||||
|
@@ -12,13 +12,17 @@ import re
|
|||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from functools import wraps
|
from functools import wraps
|
||||||
from hashlib import md5
|
from hashlib import md5
|
||||||
from typing import Any, Callable
|
from typing import Any, Callable, TYPE_CHECKING
|
||||||
import xml.etree.ElementTree as ET
|
import xml.etree.ElementTree as ET
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tiktoken
|
import tiktoken
|
||||||
from lightrag.prompt import PROMPTS
|
from lightrag.prompt import PROMPTS
|
||||||
from dotenv import load_dotenv
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
# Use TYPE_CHECKING to avoid circular imports
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from lightrag.base import BaseKVStorage
|
||||||
|
|
||||||
# use the .env that is inside the current folder
|
# use the .env that is inside the current folder
|
||||||
# allows to use different .env file for each lightrag instance
|
# allows to use different .env file for each lightrag instance
|
||||||
# the OS environment variables take precedence over the .env file
|
# the OS environment variables take precedence over the .env file
|
||||||
@@ -908,6 +912,84 @@ def lazy_external_import(module_name: str, class_name: str) -> Callable[..., Any
|
|||||||
return import_class
|
return import_class
|
||||||
|
|
||||||
|
|
||||||
|
async def use_llm_func_with_cache(
|
||||||
|
input_text: str,
|
||||||
|
use_llm_func: callable,
|
||||||
|
llm_response_cache: 'BaseKVStorage | None' = None,
|
||||||
|
max_tokens: int = None,
|
||||||
|
history_messages: list[dict[str, str]] = None,
|
||||||
|
cache_type: str = "extract"
|
||||||
|
) -> str:
|
||||||
|
"""Call LLM function with cache support
|
||||||
|
|
||||||
|
If cache is available and enabled (determined by handle_cache based on mode),
|
||||||
|
retrieve result from cache; otherwise call LLM function and save result to cache.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_text: Input text to send to LLM
|
||||||
|
use_llm_func: LLM function to call
|
||||||
|
llm_response_cache: Cache storage instance
|
||||||
|
max_tokens: Maximum tokens for generation
|
||||||
|
history_messages: History messages list
|
||||||
|
cache_type: Type of cache
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
LLM response text
|
||||||
|
"""
|
||||||
|
if llm_response_cache:
|
||||||
|
if history_messages:
|
||||||
|
history = json.dumps(history_messages, ensure_ascii=False)
|
||||||
|
_prompt = history + "\n" + input_text
|
||||||
|
else:
|
||||||
|
_prompt = input_text
|
||||||
|
|
||||||
|
arg_hash = compute_args_hash(_prompt)
|
||||||
|
cached_return, _1, _2, _3 = await handle_cache(
|
||||||
|
llm_response_cache,
|
||||||
|
arg_hash,
|
||||||
|
_prompt,
|
||||||
|
"default",
|
||||||
|
cache_type=cache_type,
|
||||||
|
)
|
||||||
|
if cached_return:
|
||||||
|
logger.debug(f"Found cache for {arg_hash}")
|
||||||
|
statistic_data["llm_cache"] += 1
|
||||||
|
return cached_return
|
||||||
|
statistic_data["llm_call"] += 1
|
||||||
|
|
||||||
|
# Call LLM
|
||||||
|
kwargs = {}
|
||||||
|
if history_messages:
|
||||||
|
kwargs["history_messages"] = history_messages
|
||||||
|
if max_tokens is not None:
|
||||||
|
kwargs["max_tokens"] = max_tokens
|
||||||
|
|
||||||
|
res: str = await use_llm_func(input_text, **kwargs)
|
||||||
|
|
||||||
|
# Save to cache
|
||||||
|
logger.info(f"Saving LLM cache for {arg_hash}")
|
||||||
|
await save_to_cache(
|
||||||
|
llm_response_cache,
|
||||||
|
CacheData(
|
||||||
|
args_hash=arg_hash,
|
||||||
|
content=res,
|
||||||
|
prompt=_prompt,
|
||||||
|
cache_type=cache_type,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
return res
|
||||||
|
|
||||||
|
# When cache is disabled, directly call LLM
|
||||||
|
kwargs = {}
|
||||||
|
if history_messages:
|
||||||
|
kwargs["history_messages"] = history_messages
|
||||||
|
if max_tokens is not None:
|
||||||
|
kwargs["max_tokens"] = max_tokens
|
||||||
|
|
||||||
|
logger.info(f"Call LLM function with query text lenght: {len(input_text)}")
|
||||||
|
return await use_llm_func(input_text, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
def get_content_summary(content: str, max_length: int = 250) -> str:
|
def get_content_summary(content: str, max_length: int = 250) -> str:
|
||||||
"""Get summary of document content
|
"""Get summary of document content
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user