Merge branch 'main' into add-env-settings
This commit is contained in:
@@ -1,3 +1,5 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
from dataclasses import dataclass, field
|
||||
@@ -5,10 +7,8 @@ from enum import Enum
|
||||
from typing import (
|
||||
Any,
|
||||
Literal,
|
||||
Optional,
|
||||
TypedDict,
|
||||
TypeVar,
|
||||
Union,
|
||||
)
|
||||
import numpy as np
|
||||
from .utils import EmbeddingFunc
|
||||
@@ -72,7 +72,7 @@ class QueryParam:
|
||||
ll_keywords: list[str] = field(default_factory=list)
|
||||
"""List of low-level keywords to refine retrieval focus."""
|
||||
|
||||
conversation_history: list[dict[str, Any]] = field(default_factory=list)
|
||||
conversation_history: list[dict[str, str]] = field(default_factory=list)
|
||||
"""Stores past conversation history to maintain context.
|
||||
Format: [{"role": "user/assistant", "content": "message"}].
|
||||
"""
|
||||
@@ -86,19 +86,15 @@ class StorageNameSpace:
|
||||
namespace: str
|
||||
global_config: dict[str, Any]
|
||||
|
||||
async def index_done_callback(self):
|
||||
async def index_done_callback(self) -> None:
|
||||
"""Commit the storage operations after indexing"""
|
||||
pass
|
||||
|
||||
async def query_done_callback(self):
|
||||
"""Commit the storage operations after querying"""
|
||||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class BaseVectorStorage(StorageNameSpace):
|
||||
embedding_func: EmbeddingFunc
|
||||
meta_fields: set = field(default_factory=set)
|
||||
meta_fields: set[str] = field(default_factory=set)
|
||||
|
||||
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
|
||||
raise NotImplementedError
|
||||
@@ -109,12 +105,20 @@ class BaseVectorStorage(StorageNameSpace):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def delete_entity(self, entity_name: str) -> None:
|
||||
"""Delete a single entity by its name"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||||
"""Delete relations for a given entity by scanning metadata"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@dataclass
|
||||
class BaseKVStorage(StorageNameSpace):
|
||||
embedding_func: EmbeddingFunc
|
||||
embedding_func: EmbeddingFunc | None = None
|
||||
|
||||
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
||||
@@ -133,50 +137,75 @@ class BaseKVStorage(StorageNameSpace):
|
||||
|
||||
@dataclass
|
||||
class BaseGraphStorage(StorageNameSpace):
|
||||
embedding_func: EmbeddingFunc = None
|
||||
embedding_func: EmbeddingFunc | None = None
|
||||
"""Check if a node exists in the graph."""
|
||||
|
||||
async def has_node(self, node_id: str) -> bool:
|
||||
raise NotImplementedError
|
||||
|
||||
"""Check if an edge exists in the graph."""
|
||||
|
||||
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
||||
raise NotImplementedError
|
||||
|
||||
"""Get the degree of a node."""
|
||||
|
||||
async def node_degree(self, node_id: str) -> int:
|
||||
raise NotImplementedError
|
||||
|
||||
"""Get the degree of an edge."""
|
||||
|
||||
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_node(self, node_id: str) -> Union[dict, None]:
|
||||
"""Get a node by its id."""
|
||||
|
||||
async def get_node(self, node_id: str) -> dict[str, str] | None:
|
||||
raise NotImplementedError
|
||||
|
||||
"""Get an edge by its source and target node ids."""
|
||||
|
||||
async def get_edge(
|
||||
self, source_node_id: str, target_node_id: str
|
||||
) -> Union[dict, None]:
|
||||
) -> dict[str, str] | None:
|
||||
raise NotImplementedError
|
||||
|
||||
async def get_node_edges(
|
||||
self, source_node_id: str
|
||||
) -> Union[list[tuple[str, str]], None]:
|
||||
"""Get all edges connected to a node."""
|
||||
|
||||
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
|
||||
raise NotImplementedError
|
||||
|
||||
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
|
||||
"""Upsert a node into the graph."""
|
||||
|
||||
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
"""Upsert an edge into the graph."""
|
||||
|
||||
async def upsert_edge(
|
||||
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
||||
):
|
||||
) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
async def delete_node(self, node_id: str):
|
||||
"""Delete a node from the graph."""
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
|
||||
"""Embed nodes using an algorithm."""
|
||||
|
||||
async def embed_nodes(
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError("Node embedding is not used in lightrag.")
|
||||
|
||||
"""Get all labels in the graph."""
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
raise NotImplementedError
|
||||
|
||||
"""Get a knowledge graph of a node."""
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self, node_label: str, max_depth: int = 5
|
||||
) -> KnowledgeGraph:
|
||||
@@ -208,9 +237,9 @@ class DocProcessingStatus:
|
||||
"""ISO format timestamp when document was created"""
|
||||
updated_at: str
|
||||
"""ISO format timestamp when document was last updated"""
|
||||
chunks_count: Optional[int] = None
|
||||
chunks_count: int | None = None
|
||||
"""Number of chunks after splitting, used for processing"""
|
||||
error: Optional[str] = None
|
||||
error: str | None = None
|
||||
"""Error message if failed"""
|
||||
metadata: dict[str, Any] = field(default_factory=dict)
|
||||
"""Additional metadata"""
|
||||
|
Reference in New Issue
Block a user