Update README
This commit is contained in:
@@ -74,7 +74,7 @@ pip install lightrag-hku
|
|||||||
|
|
||||||
**有关LightRAG服务器的更多信息,请参阅[LightRAG服务器](./lightrag/api/README.md)。**
|
**有关LightRAG服务器的更多信息,请参阅[LightRAG服务器](./lightrag/api/README.md)。**
|
||||||
|
|
||||||
## 使用LightRAG Core
|
### 使用LightRAG Core
|
||||||
|
|
||||||
LightRAG核心功能的示例代码请参见`examples`目录。您还可参照[视频](https://www.youtube.com/watch?v=g21royNJ4fw)视频完成环境配置。若已持有OpenAI API密钥,可以通过以下命令运行演示代码:
|
LightRAG核心功能的示例代码请参见`examples`目录。您还可参照[视频](https://www.youtube.com/watch?v=g21royNJ4fw)视频完成环境配置。若已持有OpenAI API密钥,可以通过以下命令运行演示代码:
|
||||||
|
|
||||||
@@ -89,6 +89,10 @@ curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_d
|
|||||||
python examples/lightrag_openai_demo.py
|
python examples/lightrag_openai_demo.py
|
||||||
```
|
```
|
||||||
|
|
||||||
|
如需流式响应示例的实现代码,请参阅 `examples/lightrag_openai_compatible_demo.py`。运行前,请确保根据需求修改示例代码中的LLM及嵌入模型配置。
|
||||||
|
|
||||||
|
**注意事项**:在运行demo程序的时候需要注意,不同的测试程序可能使用的是不同的embedding模型,更换不同的embeding模型的时候需要把清空数据目录(`./dickens`),否则层序执行会出错。如果你想保留LLM缓存,可以在清除数据目录是保留`kv_store_llm_response_cache.json`文件。
|
||||||
|
|
||||||
## 查询
|
## 查询
|
||||||
|
|
||||||
使用以下Python代码片段(在脚本中)初始化LightRAG并执行查询:
|
使用以下Python代码片段(在脚本中)初始化LightRAG并执行查询:
|
||||||
@@ -817,7 +821,7 @@ rag = LightRAG(
|
|||||||
create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
|
create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
|
||||||
CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
|
CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
|
||||||
ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
|
ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
|
||||||
|
|
||||||
-- 如有必要可以删除
|
-- 如有必要可以删除
|
||||||
drop INDEX entity_p_idx;
|
drop INDEX entity_p_idx;
|
||||||
drop INDEX vertex_p_idx;
|
drop INDEX vertex_p_idx;
|
||||||
|
@@ -125,6 +125,10 @@ curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_d
|
|||||||
python examples/lightrag_openai_demo.py
|
python examples/lightrag_openai_demo.py
|
||||||
```
|
```
|
||||||
|
|
||||||
|
For a streaming response implementation example, please see `examples/lightrag_openai_compatible_demo.py`. Prior to execution, ensure you modify the sample code’s LLM and embedding configurations accordingly.
|
||||||
|
|
||||||
|
**Note**: When running the demo program, please be aware that different test scripts may use different embedding models. If you switch to a different embedding model, you must clear the data directory (`./dickens`); otherwise, the program may encounter errors. If you wish to retain the LLM cache, you can preserve the `kv_store_llm_response_cache.json` file while clearing the data directory.
|
||||||
|
|
||||||
## Query
|
## Query
|
||||||
|
|
||||||
Use the below Python snippet (in a script) to initialize LightRAG and perform queries:
|
Use the below Python snippet (in a script) to initialize LightRAG and perform queries:
|
||||||
@@ -838,7 +842,7 @@ For production level scenarios you will most likely want to leverage an enterpri
|
|||||||
create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
|
create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
|
||||||
CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
|
CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
|
||||||
ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
|
ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
|
||||||
|
|
||||||
-- drop if necessary
|
-- drop if necessary
|
||||||
drop INDEX entity_p_idx;
|
drop INDEX entity_p_idx;
|
||||||
drop INDEX vertex_p_idx;
|
drop INDEX vertex_p_idx;
|
||||||
|
Reference in New Issue
Block a user