ollama test
This commit is contained in:
40
examples/lightrag_ollama_demo.py
Normal file
40
examples/lightrag_ollama_demo.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import os
|
||||
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import ollama_model_complete, ollama_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=ollama_model_complete,
|
||||
llm_model_name='your_model_name',
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=768,
|
||||
max_token_size=8192,
|
||||
func=lambda texts: ollama_embedding(
|
||||
texts,
|
||||
embed_model="nomic-embed-text"
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
|
||||
# Perform local search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
|
||||
# Perform global search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
|
||||
# Perform hybrid search
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
@@ -1,5 +1,5 @@
|
||||
from .lightrag import LightRAG, QueryParam
|
||||
|
||||
__version__ = "0.0.5"
|
||||
__version__ = "0.0.6"
|
||||
__author__ = "Zirui Guo"
|
||||
__url__ = "https://github.com/HKUDS/LightRAG"
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import ollama
|
||||
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout
|
||||
from tenacity import (
|
||||
retry,
|
||||
@@ -92,6 +93,34 @@ async def hf_model_if_cache(
|
||||
)
|
||||
return response_text
|
||||
|
||||
async def ollama_model_if_cache(
|
||||
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
kwargs.pop("max_tokens", None)
|
||||
kwargs.pop("response_format", None)
|
||||
|
||||
ollama_client = ollama.AsyncClient()
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
|
||||
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
||||
messages.extend(history_messages)
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
if hashing_kv is not None:
|
||||
args_hash = compute_args_hash(model, messages)
|
||||
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
||||
if if_cache_return is not None:
|
||||
return if_cache_return["return"]
|
||||
|
||||
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
||||
|
||||
result = response["message"]["content"]
|
||||
|
||||
if hashing_kv is not None:
|
||||
await hashing_kv.upsert({args_hash: {"return": result, "model": model}})
|
||||
|
||||
return result
|
||||
|
||||
async def gpt_4o_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
@@ -116,8 +145,6 @@ async def gpt_4o_mini_complete(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
|
||||
async def hf_model_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
@@ -130,6 +157,18 @@ async def hf_model_complete(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
async def ollama_model_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
model_name = kwargs['hashing_kv'].global_config['llm_model_name']
|
||||
return await ollama_model_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
@@ -154,6 +193,13 @@ async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
||||
embeddings = outputs.last_hidden_state.mean(dim=1)
|
||||
return embeddings.detach().numpy()
|
||||
|
||||
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
|
||||
embed_text = []
|
||||
for text in texts:
|
||||
data = ollama.embeddings(model=embed_model, prompt=text)
|
||||
embed_text.append(data["embedding"])
|
||||
|
||||
return embed_text
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
@@ -6,3 +6,6 @@ nano-vectordb
|
||||
hnswlib
|
||||
xxhash
|
||||
tenacity
|
||||
transformers
|
||||
torch
|
||||
ollama
|
Reference in New Issue
Block a user