diff --git a/README-zh.md b/README-zh.md index 9481bfda..b617f6bd 100644 --- a/README-zh.md +++ b/README-zh.md @@ -91,7 +91,9 @@ python examples/lightrag_openai_demo.py 如需流式响应示例的实现代码,请参阅 `examples/lightrag_openai_compatible_demo.py`。运行前,请确保根据需求修改示例代码中的LLM及嵌入模型配置。 -**注意事项**:在运行demo程序的时候需要注意,不同的测试程序可能使用的是不同的embedding模型,更换不同的embeding模型的时候需要把清空数据目录(`./dickens`),否则层序执行会出错。如果你想保留LLM缓存,可以在清除数据目录是保留`kv_store_llm_response_cache.json`文件。 +**注意1**:在运行demo程序的时候需要注意,不同的测试程序可能使用的是不同的embedding模型,更换不同的embeding模型的时候需要把清空数据目录(`./dickens`),否则层序执行会出错。如果你想保留LLM缓存,可以在清除数据目录是保留`kv_store_llm_response_cache.json`文件。 + +**注意2**:官方支持的示例代码仅为 `lightrag_openai_demo.py` 和 `lightrag_openai_compatible_demo.py` 两个文件。其他示例文件均为社区贡献内容,尚未经过完整测试与优化。 ## 使用LightRAG Core进行编程 @@ -825,7 +827,7 @@ rag = LightRAG( create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype)); CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties); ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx; - + -- 如有必要可以删除 drop INDEX entity_p_idx; drop INDEX vertex_p_idx; diff --git a/README.md b/README.md index cf493e09..2b574098 100644 --- a/README.md +++ b/README.md @@ -127,9 +127,9 @@ python examples/lightrag_openai_demo.py For a streaming response implementation example, please see `examples/lightrag_openai_compatible_demo.py`. Prior to execution, ensure you modify the sample code’s LLM and embedding configurations accordingly. -**Note**: When running the demo program, please be aware that different test scripts may use different embedding models. If you switch to a different embedding model, you must clear the data directory (`./dickens`); otherwise, the program may encounter errors. If you wish to retain the LLM cache, you can preserve the `kv_store_llm_response_cache.json` file while clearing the data directory. +**Note 1**: When running the demo program, please be aware that different test scripts may use different embedding models. If you switch to a different embedding model, you must clear the data directory (`./dickens`); otherwise, the program may encounter errors. If you wish to retain the LLM cache, you can preserve the `kv_store_llm_response_cache.json` file while clearing the data directory. -Integrate Using LightRAG core object +**Note 2**: Only `lightrag_openai_demo.py` and `lightrag_openai_compatible_demo.py` are officially supported sample codes. Other sample files are community contributions that haven't undergone full testing and optimization. ## Programing with LightRAG Core @@ -847,7 +847,7 @@ For production level scenarios you will most likely want to leverage an enterpri create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype)); CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties); ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx; - + -- drop if necessary drop INDEX entity_p_idx; drop INDEX vertex_p_idx;