Organize files
move some test files from root to example
This commit is contained in:
40
examples/get_all_edges_nx.py
Normal file
40
examples/get_all_edges_nx.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import networkx as nx
|
||||
|
||||
G = nx.read_graphml("./dickensTestEmbedcall/graph_chunk_entity_relation.graphml")
|
||||
|
||||
|
||||
def get_all_edges_and_nodes(G):
|
||||
# Get all edges and their properties
|
||||
edges_with_properties = []
|
||||
for u, v, data in G.edges(data=True):
|
||||
edges_with_properties.append(
|
||||
{
|
||||
"start": u,
|
||||
"end": v,
|
||||
"label": data.get(
|
||||
"label", ""
|
||||
), # Assuming 'label' is used for edge type
|
||||
"properties": data,
|
||||
"start_node_properties": G.nodes[u],
|
||||
"end_node_properties": G.nodes[v],
|
||||
}
|
||||
)
|
||||
|
||||
return edges_with_properties
|
||||
|
||||
|
||||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
# Assume G is your NetworkX graph loaded from Neo4j
|
||||
|
||||
all_edges = get_all_edges_and_nodes(G)
|
||||
|
||||
# Print all edges and node properties
|
||||
for edge in all_edges:
|
||||
print(f"Edge Label: {edge['label']}")
|
||||
print(f"Edge Properties: {edge['properties']}")
|
||||
print(f"Start Node: {edge['start']}")
|
||||
print(f"Start Node Properties: {edge['start_node_properties']}")
|
||||
print(f"End Node: {edge['end']}")
|
||||
print(f"End Node Properties: {edge['end_node_properties']}")
|
||||
print("---")
|
42
examples/test.py
Normal file
42
examples/test.py
Normal file
@@ -0,0 +1,42 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
# nest_asyncio.apply()
|
||||
#########
|
||||
|
||||
WORKING_DIR = "./dickens"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
|
||||
with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
113
examples/test_chromadb.py
Normal file
113
examples/test_chromadb.py
Normal file
@@ -0,0 +1,113 @@
|
||||
import os
|
||||
import asyncio
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete, openai_embedding
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
import numpy as np
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
# nest_asyncio.apply()
|
||||
#########
|
||||
WORKING_DIR = "./chromadb_test_dir"
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
# ChromaDB Configuration
|
||||
CHROMADB_HOST = os.environ.get("CHROMADB_HOST", "localhost")
|
||||
CHROMADB_PORT = int(os.environ.get("CHROMADB_PORT", 8000))
|
||||
CHROMADB_AUTH_TOKEN = os.environ.get("CHROMADB_AUTH_TOKEN", "secret-token")
|
||||
CHROMADB_AUTH_PROVIDER = os.environ.get(
|
||||
"CHROMADB_AUTH_PROVIDER", "chromadb.auth.token_authn.TokenAuthClientProvider"
|
||||
)
|
||||
CHROMADB_AUTH_HEADER = os.environ.get("CHROMADB_AUTH_HEADER", "X-Chroma-Token")
|
||||
|
||||
# Embedding Configuration and Functions
|
||||
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
||||
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
||||
|
||||
# ChromaDB requires knowing the dimension of embeddings upfront when
|
||||
# creating a collection. The embedding dimension is model-specific
|
||||
# (e.g. text-embedding-3-large uses 3072 dimensions)
|
||||
# we dynamically determine it by running a test embedding
|
||||
# and then pass it to the ChromaDBStorage class
|
||||
|
||||
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
return await openai_embedding(
|
||||
texts,
|
||||
model=EMBEDDING_MODEL,
|
||||
)
|
||||
|
||||
|
||||
async def get_embedding_dimension():
|
||||
test_text = ["This is a test sentence."]
|
||||
embedding = await embedding_func(test_text)
|
||||
return embedding.shape[1]
|
||||
|
||||
|
||||
async def create_embedding_function_instance():
|
||||
# Get embedding dimension
|
||||
embedding_dimension = await get_embedding_dimension()
|
||||
# Create embedding function instance
|
||||
return EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
||||
func=embedding_func,
|
||||
)
|
||||
|
||||
|
||||
async def initialize_rag():
|
||||
embedding_func_instance = await create_embedding_function_instance()
|
||||
|
||||
return LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete,
|
||||
embedding_func=embedding_func_instance,
|
||||
vector_storage="ChromaVectorDBStorage",
|
||||
log_level="DEBUG",
|
||||
embedding_batch_num=32,
|
||||
vector_db_storage_cls_kwargs={
|
||||
"host": CHROMADB_HOST,
|
||||
"port": CHROMADB_PORT,
|
||||
"auth_token": CHROMADB_AUTH_TOKEN,
|
||||
"auth_provider": CHROMADB_AUTH_PROVIDER,
|
||||
"auth_header_name": CHROMADB_AUTH_HEADER,
|
||||
"collection_settings": {
|
||||
"hnsw:space": "cosine",
|
||||
"hnsw:construction_ef": 128,
|
||||
"hnsw:search_ef": 128,
|
||||
"hnsw:M": 16,
|
||||
"hnsw:batch_size": 100,
|
||||
"hnsw:sync_threshold": 1000,
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
# Run the initialization
|
||||
rag = asyncio.run(initialize_rag())
|
||||
|
||||
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
||||
# rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
46
examples/test_neo4j.py
Normal file
46
examples/test_neo4j.py
Normal file
@@ -0,0 +1,46 @@
|
||||
import os
|
||||
from lightrag import LightRAG, QueryParam
|
||||
from lightrag.llm import gpt_4o_mini_complete
|
||||
|
||||
|
||||
#########
|
||||
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
||||
# import nest_asyncio
|
||||
# nest_asyncio.apply()
|
||||
#########
|
||||
|
||||
WORKING_DIR = "./local_neo4jWorkDir"
|
||||
|
||||
if not os.path.exists(WORKING_DIR):
|
||||
os.mkdir(WORKING_DIR)
|
||||
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
graph_storage="Neo4JStorage",
|
||||
log_level="INFO",
|
||||
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
|
||||
)
|
||||
|
||||
with open("./book.txt") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
)
|
Reference in New Issue
Block a user