Fix linting
This commit is contained in:
@@ -60,7 +60,9 @@ class InsertResponse(BaseModel):
|
||||
|
||||
|
||||
class ClearDocumentsResponse(BaseModel):
|
||||
status: str = Field(description="Status of the clear operation: success/partial_success/busy/fail")
|
||||
status: str = Field(
|
||||
description="Status of the clear operation: success/partial_success/busy/fail"
|
||||
)
|
||||
message: str = Field(description="Message describing the operation result")
|
||||
|
||||
|
||||
@@ -448,7 +450,7 @@ async def pipeline_index_texts(rag: LightRAG, texts: List[str]):
|
||||
await rag.apipeline_process_enqueue_documents()
|
||||
|
||||
|
||||
# TODO: deprecate after /insert_file is removed
|
||||
# TODO: deprecate after /insert_file is removed
|
||||
async def save_temp_file(input_dir: Path, file: UploadFile = File(...)) -> Path:
|
||||
"""Save the uploaded file to a temporary location
|
||||
|
||||
@@ -783,7 +785,10 @@ def create_document_routes(
|
||||
HTTPException: Raised when a serious error occurs during the clearing process,
|
||||
with status code 500 and error details in the detail field.
|
||||
"""
|
||||
from lightrag.kg.shared_storage import get_namespace_data, get_pipeline_status_lock
|
||||
from lightrag.kg.shared_storage import (
|
||||
get_namespace_data,
|
||||
get_pipeline_status_lock,
|
||||
)
|
||||
|
||||
# Get pipeline status and lock
|
||||
pipeline_status = await get_namespace_data("pipeline_status")
|
||||
@@ -794,14 +799,16 @@ def create_document_routes(
|
||||
if pipeline_status.get("busy", False):
|
||||
return ClearDocumentsResponse(
|
||||
status="busy",
|
||||
message="Cannot clear documents while pipeline is busy"
|
||||
message="Cannot clear documents while pipeline is busy",
|
||||
)
|
||||
# Set busy to true
|
||||
pipeline_status["busy"] = True
|
||||
pipeline_status["job_name"] = "Clearing Documents"
|
||||
pipeline_status["latest_message"] = "Starting document clearing process"
|
||||
if "history_messages" in pipeline_status:
|
||||
pipeline_status["history_messages"].append("Starting document clearing process")
|
||||
pipeline_status["history_messages"].append(
|
||||
"Starting document clearing process"
|
||||
)
|
||||
|
||||
try:
|
||||
# Use drop method to clear all data
|
||||
@@ -813,25 +820,27 @@ def create_document_routes(
|
||||
rag.relationships_vdb,
|
||||
rag.chunks_vdb,
|
||||
rag.chunk_entity_relation_graph,
|
||||
rag.doc_status
|
||||
rag.doc_status,
|
||||
]
|
||||
|
||||
|
||||
# Log storage drop start
|
||||
if "history_messages" in pipeline_status:
|
||||
pipeline_status["history_messages"].append("Starting to drop storage components")
|
||||
|
||||
pipeline_status["history_messages"].append(
|
||||
"Starting to drop storage components"
|
||||
)
|
||||
|
||||
for storage in storages:
|
||||
if storage is not None:
|
||||
drop_tasks.append(storage.drop())
|
||||
|
||||
|
||||
# Wait for all drop tasks to complete
|
||||
drop_results = await asyncio.gather(*drop_tasks, return_exceptions=True)
|
||||
|
||||
|
||||
# Check for errors and log results
|
||||
errors = []
|
||||
storage_success_count = 0
|
||||
storage_error_count = 0
|
||||
|
||||
|
||||
for i, result in enumerate(drop_results):
|
||||
storage_name = storages[i].__class__.__name__
|
||||
if isinstance(result, Exception):
|
||||
@@ -842,7 +851,7 @@ def create_document_routes(
|
||||
else:
|
||||
logger.info(f"Successfully dropped {storage_name}")
|
||||
storage_success_count += 1
|
||||
|
||||
|
||||
# Log storage drop results
|
||||
if "history_messages" in pipeline_status:
|
||||
if storage_error_count > 0:
|
||||
@@ -853,26 +862,25 @@ def create_document_routes(
|
||||
pipeline_status["history_messages"].append(
|
||||
f"Successfully dropped all {storage_success_count} storage components"
|
||||
)
|
||||
|
||||
|
||||
# If all storage operations failed, return error status and don't proceed with file deletion
|
||||
if storage_success_count == 0 and storage_error_count > 0:
|
||||
error_message = "All storage drop operations failed. Aborting document clearing process."
|
||||
logger.error(error_message)
|
||||
if "history_messages" in pipeline_status:
|
||||
pipeline_status["history_messages"].append(error_message)
|
||||
return ClearDocumentsResponse(
|
||||
status="fail",
|
||||
message=error_message
|
||||
)
|
||||
|
||||
return ClearDocumentsResponse(status="fail", message=error_message)
|
||||
|
||||
# Log file deletion start
|
||||
if "history_messages" in pipeline_status:
|
||||
pipeline_status["history_messages"].append("Starting to delete files in input directory")
|
||||
|
||||
pipeline_status["history_messages"].append(
|
||||
"Starting to delete files in input directory"
|
||||
)
|
||||
|
||||
# Delete all files in input_dir
|
||||
deleted_files_count = 0
|
||||
file_errors_count = 0
|
||||
|
||||
|
||||
for file_path in doc_manager.input_dir.glob("**/*"):
|
||||
if file_path.is_file():
|
||||
try:
|
||||
@@ -881,7 +889,7 @@ def create_document_routes(
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting file {file_path}: {str(e)}")
|
||||
file_errors_count += 1
|
||||
|
||||
|
||||
# Log file deletion results
|
||||
if "history_messages" in pipeline_status:
|
||||
if file_errors_count > 0:
|
||||
@@ -893,7 +901,7 @@ def create_document_routes(
|
||||
pipeline_status["history_messages"].append(
|
||||
f"Successfully deleted {deleted_files_count} files"
|
||||
)
|
||||
|
||||
|
||||
# Prepare final result message
|
||||
final_message = ""
|
||||
if errors:
|
||||
@@ -903,16 +911,12 @@ def create_document_routes(
|
||||
final_message = f"All documents cleared successfully. Deleted {deleted_files_count} files."
|
||||
status = "success"
|
||||
|
||||
|
||||
# Log final result
|
||||
if "history_messages" in pipeline_status:
|
||||
pipeline_status["history_messages"].append(final_message)
|
||||
|
||||
|
||||
# Return response based on results
|
||||
return ClearDocumentsResponse(
|
||||
status=status,
|
||||
message=final_message
|
||||
)
|
||||
return ClearDocumentsResponse(status=status, message=final_message)
|
||||
except Exception as e:
|
||||
error_msg = f"Error clearing documents: {str(e)}"
|
||||
logger.error(error_msg)
|
||||
|
@@ -111,11 +111,11 @@ class StorageNameSpace(ABC):
|
||||
@abstractmethod
|
||||
async def index_done_callback(self) -> None:
|
||||
"""Commit the storage operations after indexing"""
|
||||
|
||||
|
||||
@abstractmethod
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all data from storage and clean up resources
|
||||
|
||||
|
||||
This abstract method defines the contract for dropping all data from a storage implementation.
|
||||
Each storage type must implement this method to:
|
||||
1. Clear all data from memory and/or external storage
|
||||
@@ -124,14 +124,14 @@ class StorageNameSpace(ABC):
|
||||
4. Handle cleanup of any resources
|
||||
5. Notify other processes if necessary
|
||||
6. This action should persistent the data to disk immediately.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message with the following format:
|
||||
{
|
||||
"status": str, # "success" or "error"
|
||||
"message": str # "data dropped" on success, error details on failure
|
||||
}
|
||||
|
||||
|
||||
Implementation specific:
|
||||
- On success: return {"status": "success", "message": "data dropped"}
|
||||
- On failure: return {"status": "error", "message": "<error details>"}
|
||||
@@ -238,42 +238,43 @@ class BaseKVStorage(StorageNameSpace, ABC):
|
||||
@abstractmethod
|
||||
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
||||
"""Upsert data
|
||||
|
||||
|
||||
Importance notes for in-memory storage:
|
||||
1. Changes will be persisted to disk during the next index_done_callback
|
||||
2. update flags to notify other processes that data persistence is needed
|
||||
2. update flags to notify other processes that data persistence is needed
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete specific records from storage by their IDs
|
||||
|
||||
|
||||
Importance notes for in-memory storage:
|
||||
1. Changes will be persisted to disk during the next index_done_callback
|
||||
2. update flags to notify other processes that data persistence is needed
|
||||
|
||||
|
||||
Args:
|
||||
ids (list[str]): List of document IDs to be deleted from storage
|
||||
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||||
"""Delete specific records from storage by cache mode
|
||||
|
||||
|
||||
Importance notes for in-memory storage:
|
||||
1. Changes will be persisted to disk during the next index_done_callback
|
||||
2. update flags to notify other processes that data persistence is needed
|
||||
|
||||
|
||||
Args:
|
||||
modes (list[str]): List of cache modes to be dropped from storage
|
||||
|
||||
|
||||
Returns:
|
||||
True: if the cache drop successfully
|
||||
False: if the cache drop failed, or the cache mode is not supported
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class BaseGraphStorage(StorageNameSpace, ABC):
|
||||
embedding_func: EmbeddingFunc
|
||||
@@ -394,7 +395,7 @@ class DocStatusStorage(BaseKVStorage, ABC):
|
||||
) -> dict[str, DocProcessingStatus]:
|
||||
"""Get all documents with a specific status"""
|
||||
|
||||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||||
"""Drop cache is not supported for Doc Status storage"""
|
||||
return False
|
||||
|
||||
|
@@ -34,9 +34,9 @@ if not pm.is_installed("psycopg-pool"):
|
||||
if not pm.is_installed("asyncpg"):
|
||||
pm.install("asyncpg")
|
||||
|
||||
import psycopg # type: ignore
|
||||
from psycopg.rows import namedtuple_row # type: ignore
|
||||
from psycopg_pool import AsyncConnectionPool, PoolTimeout # type: ignore
|
||||
import psycopg # type: ignore
|
||||
from psycopg.rows import namedtuple_row # type: ignore
|
||||
from psycopg_pool import AsyncConnectionPool, PoolTimeout # type: ignore
|
||||
|
||||
|
||||
class AGEQueryException(Exception):
|
||||
@@ -871,10 +871,10 @@ class AGEStorage(BaseGraphStorage):
|
||||
async def index_done_callback(self) -> None:
|
||||
# AGES handles persistence automatically
|
||||
pass
|
||||
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop the storage by removing all nodes and relationships in the graph.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Status of the operation with keys 'status' and 'message'
|
||||
"""
|
||||
|
@@ -11,8 +11,8 @@ import pipmaster as pm
|
||||
if not pm.is_installed("chromadb"):
|
||||
pm.install("chromadb")
|
||||
|
||||
from chromadb import HttpClient, PersistentClient # type: ignore
|
||||
from chromadb.config import Settings # type: ignore
|
||||
from chromadb import HttpClient, PersistentClient # type: ignore
|
||||
from chromadb.config import Settings # type: ignore
|
||||
|
||||
|
||||
@final
|
||||
@@ -336,12 +336,12 @@ class ChromaVectorDBStorage(BaseVectorStorage):
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
|
||||
return []
|
||||
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all vector data from storage and clean up resources
|
||||
|
||||
|
||||
This method will delete all documents from the ChromaDB collection.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
@@ -353,8 +353,10 @@ class ChromaVectorDBStorage(BaseVectorStorage):
|
||||
if result and result["ids"] and len(result["ids"]) > 0:
|
||||
# Delete all documents
|
||||
self._collection.delete(ids=result["ids"])
|
||||
|
||||
logger.info(f"Process {os.getpid()} drop ChromaDB collection {self.namespace}")
|
||||
|
||||
logger.info(
|
||||
f"Process {os.getpid()} drop ChromaDB collection {self.namespace}"
|
||||
)
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping ChromaDB collection {self.namespace}: {e}")
|
||||
|
@@ -443,10 +443,10 @@ class FaissVectorDBStorage(BaseVectorStorage):
|
||||
results.append({**metadata, "id": metadata.get("__id__")})
|
||||
|
||||
return results
|
||||
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all vector data from storage and clean up resources
|
||||
|
||||
|
||||
This method will:
|
||||
1. Remove the vector database storage file if it exists
|
||||
2. Reinitialize the vector database client
|
||||
@@ -454,7 +454,7 @@ class FaissVectorDBStorage(BaseVectorStorage):
|
||||
4. Changes is persisted to disk immediately
|
||||
|
||||
This method will remove all vectors from the Faiss index and delete the storage files.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
@@ -465,7 +465,7 @@ class FaissVectorDBStorage(BaseVectorStorage):
|
||||
# Reset the index
|
||||
self._index = faiss.IndexFlatIP(self._dim)
|
||||
self._id_to_meta = {}
|
||||
|
||||
|
||||
# Remove storage files if they exist
|
||||
if os.path.exists(self._faiss_index_file):
|
||||
os.remove(self._faiss_index_file)
|
||||
@@ -478,7 +478,7 @@ class FaissVectorDBStorage(BaseVectorStorage):
|
||||
# Notify other processes
|
||||
await set_all_update_flags(self.namespace)
|
||||
self.storage_updated.value = False
|
||||
|
||||
|
||||
logger.info(f"Process {os.getpid()} drop FAISS index {self.namespace}")
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
|
@@ -24,9 +24,9 @@ from ..base import BaseGraphStorage
|
||||
if not pm.is_installed("gremlinpython"):
|
||||
pm.install("gremlinpython")
|
||||
|
||||
from gremlin_python.driver import client, serializer # type: ignore
|
||||
from gremlin_python.driver.aiohttp.transport import AiohttpTransport # type: ignore
|
||||
from gremlin_python.driver.protocol import GremlinServerError # type: ignore
|
||||
from gremlin_python.driver import client, serializer # type: ignore
|
||||
from gremlin_python.driver.aiohttp.transport import AiohttpTransport # type: ignore
|
||||
from gremlin_python.driver.protocol import GremlinServerError # type: ignore
|
||||
|
||||
|
||||
@final
|
||||
@@ -695,13 +695,13 @@ class GremlinStorage(BaseGraphStorage):
|
||||
except Exception as e:
|
||||
logger.error(f"Error during edge deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop the storage by removing all nodes and relationships in the graph.
|
||||
|
||||
|
||||
This function deletes all nodes with the specified graph name property,
|
||||
which automatically removes all associated edges.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Status of the operation with keys 'status' and 'message'
|
||||
"""
|
||||
|
@@ -112,7 +112,7 @@ class JsonDocStatusStorage(DocStatusStorage):
|
||||
"""
|
||||
Importance notes for in-memory storage:
|
||||
1. Changes will be persisted to disk during the next index_done_callback
|
||||
2. update flags to notify other processes that data persistence is needed
|
||||
2. update flags to notify other processes that data persistence is needed
|
||||
"""
|
||||
if not data:
|
||||
return
|
||||
@@ -129,14 +129,14 @@ class JsonDocStatusStorage(DocStatusStorage):
|
||||
|
||||
async def delete(self, doc_ids: list[str]) -> None:
|
||||
"""Delete specific records from storage by their IDs
|
||||
|
||||
|
||||
Importance notes for in-memory storage:
|
||||
1. Changes will be persisted to disk during the next index_done_callback
|
||||
2. update flags to notify other processes that data persistence is needed
|
||||
|
||||
2. update flags to notify other processes that data persistence is needed
|
||||
|
||||
Args:
|
||||
ids (list[str]): List of document IDs to be deleted from storage
|
||||
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
@@ -147,12 +147,12 @@ class JsonDocStatusStorage(DocStatusStorage):
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all document status data from storage and clean up resources
|
||||
|
||||
|
||||
This method will:
|
||||
1. Clear all document status data from memory
|
||||
2. Update flags to notify other processes
|
||||
3. Trigger index_done_callback to save the empty state
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
|
@@ -117,7 +117,7 @@ class JsonKVStorage(BaseKVStorage):
|
||||
"""
|
||||
Importance notes for in-memory storage:
|
||||
1. Changes will be persisted to disk during the next index_done_callback
|
||||
2. update flags to notify other processes that data persistence is needed
|
||||
2. update flags to notify other processes that data persistence is needed
|
||||
"""
|
||||
if not data:
|
||||
return
|
||||
@@ -128,14 +128,14 @@ class JsonKVStorage(BaseKVStorage):
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete specific records from storage by their IDs
|
||||
|
||||
|
||||
Importance notes for in-memory storage:
|
||||
1. Changes will be persisted to disk during the next index_done_callback
|
||||
2. update flags to notify other processes that data persistence is needed
|
||||
|
||||
|
||||
Args:
|
||||
ids (list[str]): List of document IDs to be deleted from storage
|
||||
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
@@ -144,39 +144,38 @@ class JsonKVStorage(BaseKVStorage):
|
||||
self._data.pop(doc_id, None)
|
||||
await set_all_update_flags(self.namespace)
|
||||
|
||||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||||
"""Delete specific records from storage by by cache mode
|
||||
|
||||
|
||||
Importance notes for in-memory storage:
|
||||
1. Changes will be persisted to disk during the next index_done_callback
|
||||
2. update flags to notify other processes that data persistence is needed
|
||||
|
||||
|
||||
Args:
|
||||
ids (list[str]): List of cache mode to be drop from storage
|
||||
|
||||
|
||||
Returns:
|
||||
True: if the cache drop successfully
|
||||
False: if the cache drop failed
|
||||
"""
|
||||
if not modes:
|
||||
return False
|
||||
|
||||
|
||||
try:
|
||||
await self.delete(modes)
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all data from storage and clean up resources
|
||||
This action will persistent the data to disk immediately.
|
||||
|
||||
|
||||
This method will:
|
||||
1. Clear all data from memory
|
||||
2. Update flags to notify other processes
|
||||
3. Trigger index_done_callback to save the empty state
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
|
@@ -15,7 +15,7 @@ if not pm.is_installed("pymilvus"):
|
||||
pm.install("pymilvus")
|
||||
|
||||
import configparser
|
||||
from pymilvus import MilvusClient # type: ignore
|
||||
from pymilvus import MilvusClient # type: ignore
|
||||
|
||||
config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
@@ -287,12 +287,12 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
|
||||
return []
|
||||
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all vector data from storage and clean up resources
|
||||
|
||||
|
||||
This method will delete all data from the Milvus collection.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
@@ -302,15 +302,17 @@ class MilvusVectorDBStorage(BaseVectorStorage):
|
||||
# Drop the collection and recreate it
|
||||
if self._client.has_collection(self.namespace):
|
||||
self._client.drop_collection(self.namespace)
|
||||
|
||||
|
||||
# Recreate the collection
|
||||
MilvusVectorDBStorage.create_collection_if_not_exist(
|
||||
self._client,
|
||||
self.namespace,
|
||||
dimension=self.embedding_func.embedding_dim,
|
||||
)
|
||||
|
||||
logger.info(f"Process {os.getpid()} drop Milvus collection {self.namespace}")
|
||||
|
||||
logger.info(
|
||||
f"Process {os.getpid()} drop Milvus collection {self.namespace}"
|
||||
)
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping Milvus collection {self.namespace}: {e}")
|
||||
|
@@ -25,13 +25,13 @@ if not pm.is_installed("pymongo"):
|
||||
if not pm.is_installed("motor"):
|
||||
pm.install("motor")
|
||||
|
||||
from motor.motor_asyncio import ( # type: ignore
|
||||
from motor.motor_asyncio import ( # type: ignore
|
||||
AsyncIOMotorClient,
|
||||
AsyncIOMotorDatabase,
|
||||
AsyncIOMotorCollection,
|
||||
)
|
||||
from pymongo.operations import SearchIndexModel # type: ignore
|
||||
from pymongo.errors import PyMongoError # type: ignore
|
||||
from pymongo.operations import SearchIndexModel # type: ignore
|
||||
from pymongo.errors import PyMongoError # type: ignore
|
||||
|
||||
config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
@@ -149,34 +149,36 @@ class MongoKVStorage(BaseKVStorage):
|
||||
async def index_done_callback(self) -> None:
|
||||
# Mongo handles persistence automatically
|
||||
pass
|
||||
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete documents with specified IDs
|
||||
|
||||
|
||||
Args:
|
||||
ids: List of document IDs to be deleted
|
||||
"""
|
||||
if not ids:
|
||||
return
|
||||
|
||||
|
||||
try:
|
||||
result = await self._data.delete_many({"_id": {"$in": ids}})
|
||||
logger.info(f"Deleted {result.deleted_count} documents from {self.namespace}")
|
||||
logger.info(
|
||||
f"Deleted {result.deleted_count} documents from {self.namespace}"
|
||||
)
|
||||
except PyMongoError as e:
|
||||
logger.error(f"Error deleting documents from {self.namespace}: {e}")
|
||||
|
||||
|
||||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||||
"""Delete specific records from storage by cache mode
|
||||
|
||||
|
||||
Args:
|
||||
modes (list[str]): List of cache modes to be dropped from storage
|
||||
|
||||
|
||||
Returns:
|
||||
bool: True if successful, False otherwise
|
||||
"""
|
||||
if not modes:
|
||||
return False
|
||||
|
||||
|
||||
try:
|
||||
# Build regex pattern to match documents with the specified modes
|
||||
pattern = f"^({'|'.join(modes)})_"
|
||||
@@ -189,16 +191,21 @@ class MongoKVStorage(BaseKVStorage):
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop the storage by removing all documents in the collection.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Status of the operation with keys 'status' and 'message'
|
||||
"""
|
||||
try:
|
||||
result = await self._data.delete_many({})
|
||||
deleted_count = result.deleted_count
|
||||
|
||||
logger.info(f"Dropped {deleted_count} documents from doc status {self._collection_name}")
|
||||
return {"status": "success", "message": f"{deleted_count} documents dropped"}
|
||||
|
||||
logger.info(
|
||||
f"Dropped {deleted_count} documents from doc status {self._collection_name}"
|
||||
)
|
||||
return {
|
||||
"status": "success",
|
||||
"message": f"{deleted_count} documents dropped",
|
||||
}
|
||||
except PyMongoError as e:
|
||||
logger.error(f"Error dropping doc status {self._collection_name}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
@@ -282,19 +289,24 @@ class MongoDocStatusStorage(DocStatusStorage):
|
||||
async def index_done_callback(self) -> None:
|
||||
# Mongo handles persistence automatically
|
||||
pass
|
||||
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop the storage by removing all documents in the collection.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Status of the operation with keys 'status' and 'message'
|
||||
"""
|
||||
try:
|
||||
result = await self._data.delete_many({})
|
||||
deleted_count = result.deleted_count
|
||||
|
||||
logger.info(f"Dropped {deleted_count} documents from doc status {self._collection_name}")
|
||||
return {"status": "success", "message": f"{deleted_count} documents dropped"}
|
||||
|
||||
logger.info(
|
||||
f"Dropped {deleted_count} documents from doc status {self._collection_name}"
|
||||
)
|
||||
return {
|
||||
"status": "success",
|
||||
"message": f"{deleted_count} documents dropped",
|
||||
}
|
||||
except PyMongoError as e:
|
||||
logger.error(f"Error dropping doc status {self._collection_name}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
@@ -911,16 +923,21 @@ class MongoGraphStorage(BaseGraphStorage):
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop the storage by removing all documents in the collection.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Status of the operation with keys 'status' and 'message'
|
||||
"""
|
||||
try:
|
||||
result = await self.collection.delete_many({})
|
||||
deleted_count = result.deleted_count
|
||||
|
||||
logger.info(f"Dropped {deleted_count} documents from graph {self._collection_name}")
|
||||
return {"status": "success", "message": f"{deleted_count} documents dropped"}
|
||||
|
||||
logger.info(
|
||||
f"Dropped {deleted_count} documents from graph {self._collection_name}"
|
||||
)
|
||||
return {
|
||||
"status": "success",
|
||||
"message": f"{deleted_count} documents dropped",
|
||||
}
|
||||
except PyMongoError as e:
|
||||
logger.error(f"Error dropping graph {self._collection_name}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
@@ -1211,10 +1228,10 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
|
||||
return []
|
||||
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop the storage by removing all documents in the collection and recreating vector index.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Status of the operation with keys 'status' and 'message'
|
||||
"""
|
||||
@@ -1222,12 +1239,17 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
||||
# Delete all documents
|
||||
result = await self._data.delete_many({})
|
||||
deleted_count = result.deleted_count
|
||||
|
||||
|
||||
# Recreate vector index
|
||||
await self.create_vector_index_if_not_exists()
|
||||
|
||||
logger.info(f"Dropped {deleted_count} documents from vector storage {self._collection_name} and recreated vector index")
|
||||
return {"status": "success", "message": f"{deleted_count} documents dropped and vector index recreated"}
|
||||
|
||||
logger.info(
|
||||
f"Dropped {deleted_count} documents from vector storage {self._collection_name} and recreated vector index"
|
||||
)
|
||||
return {
|
||||
"status": "success",
|
||||
"message": f"{deleted_count} documents dropped and vector index recreated",
|
||||
}
|
||||
except PyMongoError as e:
|
||||
logger.error(f"Error dropping vector storage {self._collection_name}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
@@ -309,7 +309,7 @@ class NanoVectorDBStorage(BaseVectorStorage):
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all vector data from storage and clean up resources
|
||||
|
||||
|
||||
This method will:
|
||||
1. Remove the vector database storage file if it exists
|
||||
2. Reinitialize the vector database client
|
||||
@@ -317,7 +317,7 @@ class NanoVectorDBStorage(BaseVectorStorage):
|
||||
4. Changes is persisted to disk immediately
|
||||
|
||||
This method is intended for use in scenarios where all data needs to be removed,
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
@@ -339,7 +339,9 @@ class NanoVectorDBStorage(BaseVectorStorage):
|
||||
# Reset own update flag to avoid self-reloading
|
||||
self.storage_updated.value = False
|
||||
|
||||
logger.info(f"Process {os.getpid()} drop {self.namespace}(file:{self._client_file_name})")
|
||||
logger.info(
|
||||
f"Process {os.getpid()} drop {self.namespace}(file:{self._client_file_name})"
|
||||
)
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping {self.namespace}: {e}")
|
||||
|
@@ -1028,12 +1028,12 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
self, algorithm: str
|
||||
) -> tuple[np.ndarray[Any, Any], list[str]]:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all data from storage and clean up resources
|
||||
|
||||
|
||||
This method will delete all nodes and relationships in the Neo4j database.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
@@ -1045,8 +1045,10 @@ class Neo4JStorage(BaseGraphStorage):
|
||||
query = "MATCH (n) DETACH DELETE n"
|
||||
result = await session.run(query)
|
||||
await result.consume() # Ensure result is fully consumed
|
||||
|
||||
logger.info(f"Process {os.getpid()} drop Neo4j database {self._DATABASE}")
|
||||
|
||||
logger.info(
|
||||
f"Process {os.getpid()} drop Neo4j database {self._DATABASE}"
|
||||
)
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping Neo4j database {self._DATABASE}: {e}")
|
||||
|
@@ -457,13 +457,13 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all graph data from storage and clean up resources
|
||||
|
||||
|
||||
This method will:
|
||||
1. Remove the graph storage file if it exists
|
||||
2. Reset the graph to an empty state
|
||||
3. Update flags to notify other processes
|
||||
4. Changes is persisted to disk immediately
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
@@ -479,7 +479,9 @@ class NetworkXStorage(BaseGraphStorage):
|
||||
await set_all_update_flags(self.namespace)
|
||||
# Reset own update flag to avoid self-reloading
|
||||
self.storage_updated.value = False
|
||||
logger.info(f"Process {os.getpid()} drop graph {self.namespace} (file:{self._graphml_xml_file})")
|
||||
logger.info(
|
||||
f"Process {os.getpid()} drop graph {self.namespace} (file:{self._graphml_xml_file})"
|
||||
)
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping graph {self.namespace}: {e}")
|
||||
|
@@ -27,7 +27,7 @@ if not pm.is_installed("oracledb"):
|
||||
pm.install("oracledb")
|
||||
|
||||
from graspologic import embed
|
||||
import oracledb # type: ignore
|
||||
import oracledb # type: ignore
|
||||
|
||||
|
||||
class OracleDB:
|
||||
@@ -406,43 +406,45 @@ class OracleKVStorage(BaseKVStorage):
|
||||
if not table_name:
|
||||
logger.error(f"Unknown namespace for deletion: {self.namespace}")
|
||||
return
|
||||
|
||||
|
||||
ids_list = ",".join([f"'{id}'" for id in ids])
|
||||
delete_sql = f"DELETE FROM {table_name} WHERE workspace=:workspace AND id IN ({ids_list})"
|
||||
|
||||
|
||||
await self.db.execute(delete_sql, {"workspace": self.db.workspace})
|
||||
logger.info(f"Successfully deleted {len(ids)} records from {self.namespace}")
|
||||
logger.info(
|
||||
f"Successfully deleted {len(ids)} records from {self.namespace}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting records from {self.namespace}: {e}")
|
||||
|
||||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||||
"""Delete specific records from storage by cache mode
|
||||
|
||||
|
||||
Args:
|
||||
modes (list[str]): List of cache modes to be dropped from storage
|
||||
|
||||
|
||||
Returns:
|
||||
bool: True if successful, False otherwise
|
||||
"""
|
||||
if not modes:
|
||||
return False
|
||||
|
||||
|
||||
try:
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
if not table_name:
|
||||
return False
|
||||
|
||||
|
||||
if table_name != "LIGHTRAG_LLM_CACHE":
|
||||
return False
|
||||
|
||||
|
||||
# 构建Oracle风格的IN查询
|
||||
modes_list = ", ".join([f"'{mode}'" for mode in modes])
|
||||
sql = f"""
|
||||
DELETE FROM {table_name}
|
||||
WHERE workspace = :workspace
|
||||
WHERE workspace = :workspace
|
||||
AND cache_mode IN ({modes_list})
|
||||
"""
|
||||
|
||||
|
||||
logger.info(f"Deleting cache by modes: {modes}")
|
||||
await self.db.execute(sql, {"workspace": self.db.workspace})
|
||||
return True
|
||||
@@ -455,8 +457,11 @@ class OracleKVStorage(BaseKVStorage):
|
||||
try:
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
if not table_name:
|
||||
return {"status": "error", "message": f"Unknown namespace: {self.namespace}"}
|
||||
|
||||
return {
|
||||
"status": "error",
|
||||
"message": f"Unknown namespace: {self.namespace}",
|
||||
}
|
||||
|
||||
drop_sql = SQL_TEMPLATES["drop_specifiy_table_workspace"].format(
|
||||
table_name=table_name
|
||||
)
|
||||
@@ -683,8 +688,11 @@ class OracleVectorDBStorage(BaseVectorStorage):
|
||||
try:
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
if not table_name:
|
||||
return {"status": "error", "message": f"Unknown namespace: {self.namespace}"}
|
||||
|
||||
return {
|
||||
"status": "error",
|
||||
"message": f"Unknown namespace: {self.namespace}",
|
||||
}
|
||||
|
||||
drop_sql = SQL_TEMPLATES["drop_specifiy_table_workspace"].format(
|
||||
table_name=table_name
|
||||
)
|
||||
@@ -1025,12 +1033,16 @@ class OracleGraphStorage(BaseGraphStorage):
|
||||
"""Drop the storage"""
|
||||
try:
|
||||
# 使用图形查询删除所有节点和关系
|
||||
delete_edges_sql = """DELETE FROM LIGHTRAG_GRAPH_EDGES WHERE workspace=:workspace"""
|
||||
delete_edges_sql = (
|
||||
"""DELETE FROM LIGHTRAG_GRAPH_EDGES WHERE workspace=:workspace"""
|
||||
)
|
||||
await self.db.execute(delete_edges_sql, {"workspace": self.db.workspace})
|
||||
|
||||
delete_nodes_sql = """DELETE FROM LIGHTRAG_GRAPH_NODES WHERE workspace=:workspace"""
|
||||
|
||||
delete_nodes_sql = (
|
||||
"""DELETE FROM LIGHTRAG_GRAPH_NODES WHERE workspace=:workspace"""
|
||||
)
|
||||
await self.db.execute(delete_nodes_sql, {"workspace": self.db.workspace})
|
||||
|
||||
|
||||
return {"status": "success", "message": "graph data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping graph: {e}")
|
||||
|
@@ -380,10 +380,10 @@ class PGKVStorage(BaseKVStorage):
|
||||
|
||||
async def delete(self, ids: list[str]) -> None:
|
||||
"""Delete specific records from storage by their IDs
|
||||
|
||||
|
||||
Args:
|
||||
ids (list[str]): List of document IDs to be deleted from storage
|
||||
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
@@ -398,40 +398,41 @@ class PGKVStorage(BaseKVStorage):
|
||||
delete_sql = f"DELETE FROM {table_name} WHERE workspace=$1 AND id = ANY($2)"
|
||||
|
||||
try:
|
||||
await self.db.execute(delete_sql, {"workspace": self.db.workspace, "ids": ids})
|
||||
logger.debug(f"Successfully deleted {len(ids)} records from {self.namespace}")
|
||||
await self.db.execute(
|
||||
delete_sql, {"workspace": self.db.workspace, "ids": ids}
|
||||
)
|
||||
logger.debug(
|
||||
f"Successfully deleted {len(ids)} records from {self.namespace}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting records from {self.namespace}: {e}")
|
||||
|
||||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||||
"""Delete specific records from storage by cache mode
|
||||
|
||||
|
||||
Args:
|
||||
modes (list[str]): List of cache modes to be dropped from storage
|
||||
|
||||
|
||||
Returns:
|
||||
bool: True if successful, False otherwise
|
||||
"""
|
||||
if not modes:
|
||||
return False
|
||||
|
||||
|
||||
try:
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
if not table_name:
|
||||
return False
|
||||
|
||||
|
||||
if table_name != "LIGHTRAG_LLM_CACHE":
|
||||
return False
|
||||
|
||||
|
||||
sql = f"""
|
||||
DELETE FROM {table_name}
|
||||
WHERE workspace = $1 AND mode = ANY($2)
|
||||
"""
|
||||
params = {
|
||||
"workspace": self.db.workspace,
|
||||
"modes": modes
|
||||
}
|
||||
|
||||
params = {"workspace": self.db.workspace, "modes": modes}
|
||||
|
||||
logger.info(f"Deleting cache by modes: {modes}")
|
||||
await self.db.execute(sql, params)
|
||||
return True
|
||||
@@ -444,8 +445,11 @@ class PGKVStorage(BaseKVStorage):
|
||||
try:
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
if not table_name:
|
||||
return {"status": "error", "message": f"Unknown namespace: {self.namespace}"}
|
||||
|
||||
return {
|
||||
"status": "error",
|
||||
"message": f"Unknown namespace: {self.namespace}",
|
||||
}
|
||||
|
||||
drop_sql = SQL_TEMPLATES["drop_specifiy_table_workspace"].format(
|
||||
table_name=table_name
|
||||
)
|
||||
@@ -622,7 +626,9 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
delete_sql = f"DELETE FROM {table_name} WHERE workspace=$1 AND id = ANY($2)"
|
||||
|
||||
try:
|
||||
await self.db.execute(delete_sql, {"workspace": self.db.workspace, "ids": ids})
|
||||
await self.db.execute(
|
||||
delete_sql, {"workspace": self.db.workspace, "ids": ids}
|
||||
)
|
||||
logger.debug(
|
||||
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
||||
)
|
||||
@@ -759,8 +765,11 @@ class PGVectorStorage(BaseVectorStorage):
|
||||
try:
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
if not table_name:
|
||||
return {"status": "error", "message": f"Unknown namespace: {self.namespace}"}
|
||||
|
||||
return {
|
||||
"status": "error",
|
||||
"message": f"Unknown namespace: {self.namespace}",
|
||||
}
|
||||
|
||||
drop_sql = SQL_TEMPLATES["drop_specifiy_table_workspace"].format(
|
||||
table_name=table_name
|
||||
)
|
||||
@@ -930,8 +939,11 @@ class PGDocStatusStorage(DocStatusStorage):
|
||||
try:
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
if not table_name:
|
||||
return {"status": "error", "message": f"Unknown namespace: {self.namespace}"}
|
||||
|
||||
return {
|
||||
"status": "error",
|
||||
"message": f"Unknown namespace: {self.namespace}",
|
||||
}
|
||||
|
||||
drop_sql = SQL_TEMPLATES["drop_specifiy_table_workspace"].format(
|
||||
table_name=table_name
|
||||
)
|
||||
@@ -1626,7 +1638,7 @@ class PGGraphStorage(BaseGraphStorage):
|
||||
MATCH (n)
|
||||
DETACH DELETE n
|
||||
$$) AS (result agtype)"""
|
||||
|
||||
|
||||
await self._query(drop_query, readonly=False)
|
||||
return {"status": "success", "message": "graph data dropped"}
|
||||
except Exception as e:
|
||||
@@ -1812,7 +1824,7 @@ SQL_TEMPLATES = {
|
||||
chunk_ids=EXCLUDED.chunk_ids,
|
||||
file_path=EXCLUDED.file_path,
|
||||
update_time = CURRENT_TIMESTAMP
|
||||
""",
|
||||
""",
|
||||
"relationships": """
|
||||
WITH relevant_chunks AS (
|
||||
SELECT id as chunk_id
|
||||
|
@@ -13,11 +13,12 @@ import pipmaster as pm
|
||||
if not pm.is_installed("qdrant-client"):
|
||||
pm.install("qdrant-client")
|
||||
|
||||
from qdrant_client import QdrantClient, models # type: ignore
|
||||
from qdrant_client import QdrantClient, models # type: ignore
|
||||
|
||||
config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
|
||||
|
||||
def compute_mdhash_id_for_qdrant(
|
||||
content: str, prefix: str = "", style: str = "simple"
|
||||
) -> str:
|
||||
@@ -272,7 +273,7 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
||||
except Exception as e:
|
||||
logger.error(f"Error searching for prefix '{prefix}': {e}")
|
||||
return []
|
||||
|
||||
|
||||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||||
"""Get vector data by its ID
|
||||
|
||||
@@ -285,22 +286,22 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
||||
try:
|
||||
# Convert to Qdrant compatible ID
|
||||
qdrant_id = compute_mdhash_id_for_qdrant(id)
|
||||
|
||||
|
||||
# Retrieve the point by ID
|
||||
result = self._client.retrieve(
|
||||
collection_name=self.namespace,
|
||||
ids=[qdrant_id],
|
||||
with_payload=True,
|
||||
)
|
||||
|
||||
|
||||
if not result:
|
||||
return None
|
||||
|
||||
|
||||
return result[0].payload
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving vector data for ID {id}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
||||
"""Get multiple vector data by their IDs
|
||||
|
||||
@@ -312,28 +313,28 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
||||
"""
|
||||
if not ids:
|
||||
return []
|
||||
|
||||
|
||||
try:
|
||||
# Convert to Qdrant compatible IDs
|
||||
qdrant_ids = [compute_mdhash_id_for_qdrant(id) for id in ids]
|
||||
|
||||
|
||||
# Retrieve the points by IDs
|
||||
results = self._client.retrieve(
|
||||
collection_name=self.namespace,
|
||||
ids=qdrant_ids,
|
||||
with_payload=True,
|
||||
)
|
||||
|
||||
|
||||
return [point.payload for point in results]
|
||||
except Exception as e:
|
||||
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
|
||||
return []
|
||||
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all vector data from storage and clean up resources
|
||||
|
||||
|
||||
This method will delete all data from the Qdrant collection.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
@@ -343,17 +344,20 @@ class QdrantVectorDBStorage(BaseVectorStorage):
|
||||
# Delete the collection and recreate it
|
||||
if self._client.collection_exists(self.namespace):
|
||||
self._client.delete_collection(self.namespace)
|
||||
|
||||
|
||||
# Recreate the collection
|
||||
QdrantVectorDBStorage.create_collection_if_not_exist(
|
||||
self._client,
|
||||
self.namespace,
|
||||
vectors_config=models.VectorParams(
|
||||
size=self.embedding_func.embedding_dim, distance=models.Distance.COSINE
|
||||
size=self.embedding_func.embedding_dim,
|
||||
distance=models.Distance.COSINE,
|
||||
),
|
||||
)
|
||||
|
||||
logger.info(f"Process {os.getpid()} drop Qdrant collection {self.namespace}")
|
||||
|
||||
logger.info(
|
||||
f"Process {os.getpid()} drop Qdrant collection {self.namespace}"
|
||||
)
|
||||
return {"status": "success", "message": "data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping Qdrant collection {self.namespace}: {e}")
|
||||
|
@@ -8,7 +8,7 @@ if not pm.is_installed("redis"):
|
||||
pm.install("redis")
|
||||
|
||||
# aioredis is a depricated library, replaced with redis
|
||||
from redis.asyncio import Redis # type: ignore
|
||||
from redis.asyncio import Redis # type: ignore
|
||||
from lightrag.utils import logger
|
||||
from lightrag.base import BaseKVStorage
|
||||
import json
|
||||
@@ -83,51 +83,51 @@ class RedisKVStorage(BaseKVStorage):
|
||||
logger.info(
|
||||
f"Deleted {deleted_count} of {len(ids)} entries from {self.namespace}"
|
||||
)
|
||||
|
||||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||||
|
||||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||||
"""Delete specific records from storage by by cache mode
|
||||
|
||||
|
||||
Importance notes for Redis storage:
|
||||
1. This will immediately delete the specified cache modes from Redis
|
||||
|
||||
|
||||
Args:
|
||||
modes (list[str]): List of cache mode to be drop from storage
|
||||
|
||||
|
||||
Returns:
|
||||
True: if the cache drop successfully
|
||||
False: if the cache drop failed
|
||||
"""
|
||||
if not modes:
|
||||
return False
|
||||
|
||||
|
||||
try:
|
||||
await self.delete(modes)
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop the storage by removing all keys under the current namespace.
|
||||
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Status of the operation with keys 'status' and 'message'
|
||||
"""
|
||||
try:
|
||||
keys = await self._redis.keys(f"{self.namespace}:*")
|
||||
|
||||
|
||||
if keys:
|
||||
pipe = self._redis.pipeline()
|
||||
for key in keys:
|
||||
pipe.delete(key)
|
||||
results = await pipe.execute()
|
||||
deleted_count = sum(results)
|
||||
|
||||
|
||||
logger.info(f"Dropped {deleted_count} keys from {self.namespace}")
|
||||
return {"status": "success", "message": f"{deleted_count} keys dropped"}
|
||||
else:
|
||||
logger.info(f"No keys found to drop in {self.namespace}")
|
||||
return {"status": "success", "message": "no keys to drop"}
|
||||
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error dropping keys from {self.namespace}: {e}")
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
@@ -20,7 +20,7 @@ if not pm.is_installed("pymysql"):
|
||||
if not pm.is_installed("sqlalchemy"):
|
||||
pm.install("sqlalchemy")
|
||||
|
||||
from sqlalchemy import create_engine, text # type: ignore
|
||||
from sqlalchemy import create_engine, text # type: ignore
|
||||
|
||||
|
||||
class TiDB:
|
||||
@@ -290,47 +290,49 @@ class TiDBKVStorage(BaseKVStorage):
|
||||
try:
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
id_field = namespace_to_id(self.namespace)
|
||||
|
||||
|
||||
if not table_name or not id_field:
|
||||
logger.error(f"Unknown namespace for deletion: {self.namespace}")
|
||||
return
|
||||
|
||||
|
||||
ids_list = ",".join([f"'{id}'" for id in ids])
|
||||
delete_sql = f"DELETE FROM {table_name} WHERE workspace = :workspace AND {id_field} IN ({ids_list})"
|
||||
|
||||
|
||||
await self.db.execute(delete_sql, {"workspace": self.db.workspace})
|
||||
logger.info(f"Successfully deleted {len(ids)} records from {self.namespace}")
|
||||
logger.info(
|
||||
f"Successfully deleted {len(ids)} records from {self.namespace}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting records from {self.namespace}: {e}")
|
||||
|
||||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||||
"""Delete specific records from storage by cache mode
|
||||
|
||||
|
||||
Args:
|
||||
modes (list[str]): List of cache modes to be dropped from storage
|
||||
|
||||
|
||||
Returns:
|
||||
bool: True if successful, False otherwise
|
||||
"""
|
||||
if not modes:
|
||||
return False
|
||||
|
||||
|
||||
try:
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
if not table_name:
|
||||
return False
|
||||
|
||||
|
||||
if table_name != "LIGHTRAG_LLM_CACHE":
|
||||
return False
|
||||
|
||||
|
||||
# 构建MySQL风格的IN查询
|
||||
modes_list = ", ".join([f"'{mode}'" for mode in modes])
|
||||
sql = f"""
|
||||
DELETE FROM {table_name}
|
||||
WHERE workspace = :workspace
|
||||
WHERE workspace = :workspace
|
||||
AND mode IN ({modes_list})
|
||||
"""
|
||||
|
||||
|
||||
logger.info(f"Deleting cache by modes: {modes}")
|
||||
await self.db.execute(sql, {"workspace": self.db.workspace})
|
||||
return True
|
||||
@@ -343,8 +345,11 @@ class TiDBKVStorage(BaseKVStorage):
|
||||
try:
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
if not table_name:
|
||||
return {"status": "error", "message": f"Unknown namespace: {self.namespace}"}
|
||||
|
||||
return {
|
||||
"status": "error",
|
||||
"message": f"Unknown namespace: {self.namespace}",
|
||||
}
|
||||
|
||||
drop_sql = SQL_TEMPLATES["drop_specifiy_table_workspace"].format(
|
||||
table_name=table_name
|
||||
)
|
||||
@@ -492,7 +497,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
id_field = namespace_to_id(self.namespace)
|
||||
|
||||
|
||||
if not table_name or not id_field:
|
||||
logger.error(f"Unknown namespace for vector deletion: {self.namespace}")
|
||||
return
|
||||
@@ -502,7 +507,9 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
|
||||
try:
|
||||
await self.db.execute(delete_sql, {"workspace": self.db.workspace})
|
||||
logger.debug(f"Successfully deleted {len(ids)} vectors from {self.namespace}")
|
||||
logger.debug(
|
||||
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
|
||||
|
||||
@@ -551,8 +558,11 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
||||
try:
|
||||
table_name = namespace_to_table_name(self.namespace)
|
||||
if not table_name:
|
||||
return {"status": "error", "message": f"Unknown namespace: {self.namespace}"}
|
||||
|
||||
return {
|
||||
"status": "error",
|
||||
"message": f"Unknown namespace: {self.namespace}",
|
||||
}
|
||||
|
||||
drop_sql = SQL_TEMPLATES["drop_specifiy_table_workspace"].format(
|
||||
table_name=table_name
|
||||
)
|
||||
|
Reference in New Issue
Block a user