Added API as an option to the installation, reorganized the API and fused all documentations in README.md
This commit is contained in:
288
README.md
288
README.md
@@ -1019,6 +1019,294 @@ def extract_queries(file_path):
|
||||
└── test.py
|
||||
```
|
||||
|
||||
## Install with API Support
|
||||
|
||||
LightRAG provides optional API support through FastAPI servers that add RAG capabilities to existing LLM services. You can install LightRAG with API support in two ways:
|
||||
|
||||
### 1. Installation from PyPI
|
||||
|
||||
```bash
|
||||
pip install "lightrag-hku[api]"
|
||||
```
|
||||
|
||||
### 2. Installation from Source (Development)
|
||||
|
||||
```bash
|
||||
# Clone the repository
|
||||
git clone https://github.com/ParisNeo/lightrag.git
|
||||
|
||||
# Change to the repository directory
|
||||
cd lightrag
|
||||
|
||||
# Install in editable mode with API support
|
||||
pip install -e ".[api]"
|
||||
```
|
||||
|
||||
### Prerequisites
|
||||
|
||||
Before running any of the servers, ensure you have the corresponding backend service running:
|
||||
|
||||
#### For LoLLMs Server
|
||||
- LoLLMs must be running and accessible
|
||||
- Default connection: http://localhost:11434
|
||||
- Configure using --lollms-host if running on a different host/port
|
||||
|
||||
#### For Ollama Server
|
||||
- Ollama must be running and accessible
|
||||
- Default connection: http://localhost:11434
|
||||
- Configure using --ollama-host if running on a different host/port
|
||||
|
||||
#### For OpenAI Server
|
||||
- Requires valid OpenAI API credentials set in environment variables
|
||||
- OPENAI_API_KEY must be set
|
||||
|
||||
### Configuration Options
|
||||
|
||||
Each server has its own specific configuration options:
|
||||
|
||||
#### LoLLMs Server Options
|
||||
|
||||
| Parameter | Default | Description |
|
||||
|-----------|---------|-------------|
|
||||
| --host | 0.0.0.0 | RAG server host |
|
||||
| --port | 9621 | RAG server port |
|
||||
| --model | mistral-nemo:latest | LLM model name |
|
||||
| --embedding-model | bge-m3:latest | Embedding model name |
|
||||
| --lollms-host | http://localhost:11434 | LoLLMS backend URL |
|
||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||
| --max-async | 4 | Maximum async operations |
|
||||
| --max-tokens | 32768 | Maximum token size |
|
||||
| --embedding-dim | 1024 | Embedding dimensions |
|
||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||
| --input-file | ./book.txt | Initial input file |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
#### Ollama Server Options
|
||||
|
||||
| Parameter | Default | Description |
|
||||
|-----------|---------|-------------|
|
||||
| --host | 0.0.0.0 | RAG server host |
|
||||
| --port | 9621 | RAG server port |
|
||||
| --model | mistral-nemo:latest | LLM model name |
|
||||
| --embedding-model | bge-m3:latest | Embedding model name |
|
||||
| --ollama-host | http://localhost:11434 | Ollama backend URL |
|
||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||
| --max-async | 4 | Maximum async operations |
|
||||
| --max-tokens | 32768 | Maximum token size |
|
||||
| --embedding-dim | 1024 | Embedding dimensions |
|
||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||
| --input-file | ./book.txt | Initial input file |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
#### OpenAI Server Options
|
||||
|
||||
| Parameter | Default | Description |
|
||||
|-----------|---------|-------------|
|
||||
| --host | 0.0.0.0 | RAG server host |
|
||||
| --port | 9621 | RAG server port |
|
||||
| --model | gpt-4 | OpenAI model name |
|
||||
| --embedding-model | text-embedding-3-large | OpenAI embedding model |
|
||||
| --working-dir | ./rag_storage | Working directory for RAG |
|
||||
| --max-tokens | 32768 | Maximum token size |
|
||||
| --max-embed-tokens | 8192 | Maximum embedding token size |
|
||||
| --input-dir | ./inputs | Input directory for documents |
|
||||
| --log-level | INFO | Logging level |
|
||||
|
||||
### Example Usage
|
||||
|
||||
#### LoLLMs RAG Server
|
||||
|
||||
```bash
|
||||
# Custom configuration with specific model and working directory
|
||||
lollms-lightrag-server --model mistral-nemo --port 8080 --working-dir ./custom_rag
|
||||
|
||||
# Using specific models (ensure they are installed in your LoLLMs instance)
|
||||
lollms-lightrag-server --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
|
||||
```
|
||||
|
||||
#### Ollama RAG Server
|
||||
|
||||
```bash
|
||||
# Custom configuration with specific model and working directory
|
||||
ollama-lightrag-server --model mistral-nemo:latest --port 8080 --working-dir ./custom_rag
|
||||
|
||||
# Using specific models (ensure they are installed in your Ollama instance)
|
||||
ollama-lightrag-server --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024
|
||||
```
|
||||
|
||||
#### OpenAI RAG Server
|
||||
|
||||
```bash
|
||||
# Using GPT-4 with text-embedding-3-large
|
||||
openai-lightrag-server --port 9624 --model gpt-4 --embedding-model text-embedding-3-large
|
||||
```
|
||||
|
||||
**Important Notes:**
|
||||
- For LoLLMs: Make sure the specified models are installed in your LoLLMs instance
|
||||
- For Ollama: Make sure the specified models are installed in your Ollama instance
|
||||
- For OpenAI: Ensure you have set up your OPENAI_API_KEY environment variable
|
||||
|
||||
For help on any server, use the --help flag:
|
||||
```bash
|
||||
lollms-lightrag-server --help
|
||||
ollama-lightrag-server --help
|
||||
openai-lightrag-server --help
|
||||
```
|
||||
|
||||
Note: If you don't need the API functionality, you can install the base package without API support using:
|
||||
```bash
|
||||
pip install lightrag-hku
|
||||
```
|
||||
|
||||
## API Endpoints
|
||||
|
||||
All servers (LoLLMs, Ollama, and OpenAI) provide the same REST API endpoints for RAG functionality.
|
||||
|
||||
### Query Endpoints
|
||||
|
||||
#### POST /query
|
||||
Query the RAG system with options for different search modes.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
#### POST /query/stream
|
||||
Stream responses from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/query/stream" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "Your question here", "mode": "hybrid"}'
|
||||
```
|
||||
|
||||
### Document Management Endpoints
|
||||
|
||||
#### POST /documents/text
|
||||
Insert text directly into the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/text" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"text": "Your text content here", "description": "Optional description"}'
|
||||
```
|
||||
|
||||
#### POST /documents/file
|
||||
Upload a single file to the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/file" \
|
||||
-F "file=@/path/to/your/document.txt" \
|
||||
-F "description=Optional description"
|
||||
```
|
||||
|
||||
#### POST /documents/batch
|
||||
Upload multiple files at once.
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:9621/documents/batch" \
|
||||
-F "files=@/path/to/doc1.txt" \
|
||||
-F "files=@/path/to/doc2.txt"
|
||||
```
|
||||
|
||||
#### DELETE /documents
|
||||
Clear all documents from the RAG system.
|
||||
|
||||
```bash
|
||||
curl -X DELETE "http://localhost:9621/documents"
|
||||
```
|
||||
|
||||
### Utility Endpoints
|
||||
|
||||
#### GET /health
|
||||
Check server health and configuration.
|
||||
|
||||
```bash
|
||||
curl "http://localhost:9621/health"
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
### Running in Development Mode
|
||||
|
||||
For LoLLMs:
|
||||
```bash
|
||||
uvicorn lollms_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
|
||||
For Ollama:
|
||||
```bash
|
||||
uvicorn ollama_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
|
||||
For OpenAI:
|
||||
```bash
|
||||
uvicorn openai_lightrag_server:app --reload --port 9621
|
||||
```
|
||||
|
||||
### API Documentation
|
||||
|
||||
When any server is running, visit:
|
||||
- Swagger UI: http://localhost:9621/docs
|
||||
- ReDoc: http://localhost:9621/redoc
|
||||
|
||||
### Testing API Endpoints
|
||||
|
||||
You can test the API endpoints using the provided curl commands or through the Swagger UI interface. Make sure to:
|
||||
1. Start the appropriate backend service (LoLLMs, Ollama, or OpenAI)
|
||||
2. Start the RAG server
|
||||
3. Upload some documents using the document management endpoints
|
||||
4. Query the system using the query endpoints
|
||||
|
||||
### Important Features
|
||||
|
||||
#### Automatic Document Vectorization
|
||||
When starting any of the servers with the `--input-dir` parameter, the system will automatically:
|
||||
1. Scan the specified directory for documents
|
||||
2. Check for existing vectorized content in the database
|
||||
3. Only vectorize new documents that aren't already in the database
|
||||
4. Make all content immediately available for RAG queries
|
||||
|
||||
This intelligent caching mechanism:
|
||||
- Prevents unnecessary re-vectorization of existing documents
|
||||
- Reduces startup time for subsequent runs
|
||||
- Preserves system resources
|
||||
- Maintains consistency across restarts
|
||||
|
||||
### Example Usage
|
||||
|
||||
#### LoLLMs RAG Server
|
||||
|
||||
```bash
|
||||
# Start server with automatic document vectorization
|
||||
# Only new documents will be vectorized, existing ones will be loaded from cache
|
||||
lollms-lightrag-server --input-dir ./my_documents --port 8080
|
||||
```
|
||||
|
||||
#### Ollama RAG Server
|
||||
|
||||
```bash
|
||||
# Start server with automatic document vectorization
|
||||
# Previously vectorized documents will be loaded from the database
|
||||
ollama-lightrag-server --input-dir ./my_documents --port 8080
|
||||
```
|
||||
|
||||
#### OpenAI RAG Server
|
||||
|
||||
```bash
|
||||
# Start server with automatic document vectorization
|
||||
# Existing documents are retrieved from cache, only new ones are processed
|
||||
openai-lightrag-server --input-dir ./my_documents --port 9624
|
||||
```
|
||||
|
||||
**Important Notes:**
|
||||
- The `--input-dir` parameter enables automatic document processing at startup
|
||||
- Documents already in the database are not re-vectorized
|
||||
- Only new documents in the input directory will be processed
|
||||
- This optimization significantly reduces startup time for subsequent runs
|
||||
- The working directory (`--working-dir`) stores the vectorized documents database
|
||||
|
||||
## Star History
|
||||
|
||||
|
Reference in New Issue
Block a user