fastapi接收环境变量EMBEDDING_MODEL、LLM_MODEL、OPENAI_API_KEY、OPENAI_BASE_URL以自定模型
This commit is contained in:
@@ -21,19 +21,18 @@ print(f"WORKING_DIR: {WORKING_DIR}")
|
|||||||
if not os.path.exists(WORKING_DIR):
|
if not os.path.exists(WORKING_DIR):
|
||||||
os.mkdir(WORKING_DIR)
|
os.mkdir(WORKING_DIR)
|
||||||
|
|
||||||
|
|
||||||
# LLM model function
|
# LLM model function
|
||||||
|
|
||||||
|
|
||||||
async def llm_model_func(
|
async def llm_model_func(
|
||||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||||
) -> str:
|
) -> str:
|
||||||
return await openai_complete_if_cache(
|
return await openai_complete_if_cache(
|
||||||
"gpt-4o-mini",
|
os.environ.get("LLM_MODEL", "gpt-4o-mini"),
|
||||||
prompt,
|
prompt,
|
||||||
system_prompt=system_prompt,
|
system_prompt=system_prompt,
|
||||||
history_messages=history_messages,
|
history_messages=history_messages,
|
||||||
api_key="YOUR_API_KEY",
|
|
||||||
base_url="YourURL/v1",
|
|
||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -44,21 +43,28 @@ async def llm_model_func(
|
|||||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||||
return await openai_embedding(
|
return await openai_embedding(
|
||||||
texts,
|
texts,
|
||||||
model="text-embedding-3-large",
|
model=os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large"),
|
||||||
api_key="YOUR_API_KEY",
|
|
||||||
base_url="YourURL/v1",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def get_embedding_dim():
|
||||||
|
test_text = ["This is a test sentence."]
|
||||||
|
embedding = await embedding_func(test_text)
|
||||||
|
embedding_dim = embedding.shape[1]
|
||||||
|
print(f"{embedding_dim=}")
|
||||||
|
return embedding_dim
|
||||||
|
|
||||||
|
|
||||||
# Initialize RAG instance
|
# Initialize RAG instance
|
||||||
rag = LightRAG(
|
rag = LightRAG(
|
||||||
working_dir=WORKING_DIR,
|
working_dir=WORKING_DIR,
|
||||||
llm_model_func=llm_model_func,
|
llm_model_func=llm_model_func,
|
||||||
embedding_func=EmbeddingFunc(
|
embedding_func=EmbeddingFunc(embedding_dim=asyncio.run(get_embedding_dim()),
|
||||||
embedding_dim=3072, max_token_size=8192, func=embedding_func
|
max_token_size=8192,
|
||||||
),
|
func=embedding_func),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
# Data models
|
# Data models
|
||||||
|
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user