Manually reformatted files
This commit is contained in:
@@ -3,7 +3,7 @@ from pyvis.network import Network
|
||||
import random
|
||||
|
||||
# Load the GraphML file
|
||||
G = nx.read_graphml('./dickens/graph_chunk_entity_relation.graphml')
|
||||
G = nx.read_graphml("./dickens/graph_chunk_entity_relation.graphml")
|
||||
|
||||
# Create a Pyvis network
|
||||
net = Network(notebook=True)
|
||||
@@ -13,7 +13,7 @@ net.from_nx(G)
|
||||
|
||||
# Add colors to nodes
|
||||
for node in net.nodes:
|
||||
node['color'] = "#{:06x}".format(random.randint(0, 0xFFFFFF))
|
||||
node["color"] = "#{:06x}".format(random.randint(0, 0xFFFFFF))
|
||||
|
||||
# Save and display the network
|
||||
net.show('knowledge_graph.html')
|
||||
net.show("knowledge_graph.html")
|
||||
|
@@ -13,6 +13,7 @@ NEO4J_URI = "bolt://localhost:7687"
|
||||
NEO4J_USERNAME = "neo4j"
|
||||
NEO4J_PASSWORD = "your_password"
|
||||
|
||||
|
||||
def convert_xml_to_json(xml_path, output_path):
|
||||
"""Converts XML file to JSON and saves the output."""
|
||||
if not os.path.exists(xml_path):
|
||||
@@ -21,7 +22,7 @@ def convert_xml_to_json(xml_path, output_path):
|
||||
|
||||
json_data = xml_to_json(xml_path)
|
||||
if json_data:
|
||||
with open(output_path, 'w', encoding='utf-8') as f:
|
||||
with open(output_path, "w", encoding="utf-8") as f:
|
||||
json.dump(json_data, f, ensure_ascii=False, indent=2)
|
||||
print(f"JSON file created: {output_path}")
|
||||
return json_data
|
||||
@@ -29,16 +30,18 @@ def convert_xml_to_json(xml_path, output_path):
|
||||
print("Failed to create JSON data")
|
||||
return None
|
||||
|
||||
|
||||
def process_in_batches(tx, query, data, batch_size):
|
||||
"""Process data in batches and execute the given query."""
|
||||
for i in range(0, len(data), batch_size):
|
||||
batch = data[i:i + batch_size]
|
||||
batch = data[i : i + batch_size]
|
||||
tx.run(query, {"nodes": batch} if "nodes" in query else {"edges": batch})
|
||||
|
||||
|
||||
def main():
|
||||
# Paths
|
||||
xml_file = os.path.join(WORKING_DIR, 'graph_chunk_entity_relation.graphml')
|
||||
json_file = os.path.join(WORKING_DIR, 'graph_data.json')
|
||||
xml_file = os.path.join(WORKING_DIR, "graph_chunk_entity_relation.graphml")
|
||||
json_file = os.path.join(WORKING_DIR, "graph_data.json")
|
||||
|
||||
# Convert XML to JSON
|
||||
json_data = convert_xml_to_json(xml_file, json_file)
|
||||
@@ -46,8 +49,8 @@ def main():
|
||||
return
|
||||
|
||||
# Load nodes and edges
|
||||
nodes = json_data.get('nodes', [])
|
||||
edges = json_data.get('edges', [])
|
||||
nodes = json_data.get("nodes", [])
|
||||
edges = json_data.get("edges", [])
|
||||
|
||||
# Neo4j queries
|
||||
create_nodes_query = """
|
||||
@@ -100,10 +103,14 @@ def main():
|
||||
# Execute queries in batches
|
||||
with driver.session() as session:
|
||||
# Insert nodes in batches
|
||||
session.execute_write(process_in_batches, create_nodes_query, nodes, BATCH_SIZE_NODES)
|
||||
session.execute_write(
|
||||
process_in_batches, create_nodes_query, nodes, BATCH_SIZE_NODES
|
||||
)
|
||||
|
||||
# Insert edges in batches
|
||||
session.execute_write(process_in_batches, create_edges_query, edges, BATCH_SIZE_EDGES)
|
||||
session.execute_write(
|
||||
process_in_batches, create_edges_query, edges, BATCH_SIZE_EDGES
|
||||
)
|
||||
|
||||
# Set displayName and labels
|
||||
session.run(set_displayname_and_labels_query)
|
||||
@@ -114,5 +121,6 @@ def main():
|
||||
finally:
|
||||
driver.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
@@ -52,6 +52,7 @@ async def test_funcs():
|
||||
|
||||
# asyncio.run(test_funcs())
|
||||
|
||||
|
||||
async def main():
|
||||
try:
|
||||
embedding_dimension = await get_embedding_dim()
|
||||
@@ -61,35 +62,47 @@ async def main():
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=llm_model_func,
|
||||
embedding_func=EmbeddingFunc(
|
||||
embedding_dim=embedding_dimension, max_token_size=8192, func=embedding_func
|
||||
embedding_dim=embedding_dimension,
|
||||
max_token_size=8192,
|
||||
func=embedding_func,
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
with open("./book.txt", "r", encoding="utf-8") as f:
|
||||
rag.insert(f.read())
|
||||
|
||||
# Perform naive search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
)
|
||||
)
|
||||
|
||||
# Perform local search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||
)
|
||||
)
|
||||
|
||||
# Perform global search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
||||
rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="global"),
|
||||
)
|
||||
)
|
||||
|
||||
# Perform hybrid search
|
||||
print(
|
||||
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
||||
rag.query(
|
||||
"What are the top themes in this story?",
|
||||
param=QueryParam(mode="hybrid"),
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
@@ -30,7 +30,7 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
texts,
|
||||
model="netease-youdao/bce-embedding-base_v1",
|
||||
api_key=os.getenv("SILICONFLOW_API_KEY"),
|
||||
max_token_size=512
|
||||
max_token_size=512,
|
||||
)
|
||||
|
||||
|
||||
|
@@ -27,11 +27,12 @@ rag = LightRAG(
|
||||
# Read all .txt files from the TEXT_FILES_DIR directory
|
||||
texts = []
|
||||
for filename in os.listdir(TEXT_FILES_DIR):
|
||||
if filename.endswith('.txt'):
|
||||
if filename.endswith(".txt"):
|
||||
file_path = os.path.join(TEXT_FILES_DIR, filename)
|
||||
with open(file_path, 'r', encoding='utf-8') as file:
|
||||
with open(file_path, "r", encoding="utf-8") as file:
|
||||
texts.append(file.read())
|
||||
|
||||
|
||||
# Batch insert texts into LightRAG with a retry mechanism
|
||||
def insert_texts_with_retry(rag, texts, retries=3, delay=5):
|
||||
for _ in range(retries):
|
||||
@@ -39,37 +40,58 @@ def insert_texts_with_retry(rag, texts, retries=3, delay=5):
|
||||
rag.insert(texts)
|
||||
return
|
||||
except Exception as e:
|
||||
print(f"Error occurred during insertion: {e}. Retrying in {delay} seconds...")
|
||||
print(
|
||||
f"Error occurred during insertion: {e}. Retrying in {delay} seconds..."
|
||||
)
|
||||
time.sleep(delay)
|
||||
raise RuntimeError("Failed to insert texts after multiple retries.")
|
||||
|
||||
|
||||
insert_texts_with_retry(rag, texts)
|
||||
|
||||
# Perform different types of queries and handle potential errors
|
||||
try:
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error performing naive search: {e}")
|
||||
|
||||
try:
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="local")
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error performing local search: {e}")
|
||||
|
||||
try:
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="global")
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error performing global search: {e}")
|
||||
|
||||
try:
|
||||
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
||||
print(
|
||||
rag.query(
|
||||
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error performing hybrid search: {e}")
|
||||
|
||||
|
||||
# Function to clear VRAM resources
|
||||
def clear_vram():
|
||||
os.system("sudo nvidia-smi --gpu-reset")
|
||||
|
||||
|
||||
# Regularly clear VRAM to prevent overflow
|
||||
clear_vram_interval = 3600 # Clear once every hour
|
||||
start_time = time.time()
|
||||
|
@@ -7,7 +7,13 @@ import aiohttp
|
||||
import numpy as np
|
||||
import ollama
|
||||
|
||||
from openai import AsyncOpenAI, APIConnectionError, RateLimitError, Timeout, AsyncAzureOpenAI
|
||||
from openai import (
|
||||
AsyncOpenAI,
|
||||
APIConnectionError,
|
||||
RateLimitError,
|
||||
Timeout,
|
||||
AsyncAzureOpenAI,
|
||||
)
|
||||
|
||||
import base64
|
||||
import struct
|
||||
@@ -70,26 +76,31 @@ async def openai_complete_if_cache(
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
||||
)
|
||||
async def azure_openai_complete_if_cache(model,
|
||||
async def azure_openai_complete_if_cache(
|
||||
model,
|
||||
prompt,
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
base_url=None,
|
||||
api_key=None,
|
||||
**kwargs):
|
||||
**kwargs,
|
||||
):
|
||||
if api_key:
|
||||
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
||||
if base_url:
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
||||
|
||||
openai_async_client = AsyncAzureOpenAI(azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||||
api_version=os.getenv("AZURE_OPENAI_API_VERSION"))
|
||||
openai_async_client = AsyncAzureOpenAI(
|
||||
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||||
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
||||
)
|
||||
|
||||
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
||||
messages = []
|
||||
@@ -114,6 +125,7 @@ async def azure_openai_complete_if_cache(model,
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
|
||||
|
||||
class BedrockError(Exception):
|
||||
"""Generic error for issues related to Amazon Bedrock"""
|
||||
|
||||
@@ -205,8 +217,12 @@ async def bedrock_complete_if_cache(
|
||||
|
||||
@lru_cache(maxsize=1)
|
||||
def initialize_hf_model(model_name):
|
||||
hf_tokenizer = AutoTokenizer.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
|
||||
hf_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
|
||||
hf_tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name, device_map="auto", trust_remote_code=True
|
||||
)
|
||||
hf_model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, device_map="auto", trust_remote_code=True
|
||||
)
|
||||
if hf_tokenizer.pad_token is None:
|
||||
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
||||
|
||||
@@ -328,8 +344,9 @@ async def gpt_4o_mini_complete(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def azure_openai_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
return await azure_openai_complete_if_cache(
|
||||
"conversation-4o-mini",
|
||||
@@ -339,6 +356,7 @@ async def azure_openai_complete(
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def bedrock_complete(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
@@ -418,9 +436,11 @@ async def azure_openai_embedding(
|
||||
if base_url:
|
||||
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
||||
|
||||
openai_async_client = AsyncAzureOpenAI(azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||||
api_version=os.getenv("AZURE_OPENAI_API_VERSION"))
|
||||
openai_async_client = AsyncAzureOpenAI(
|
||||
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
||||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||||
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
||||
)
|
||||
|
||||
response = await openai_async_client.embeddings.create(
|
||||
model=model, input=texts, encoding_format="float"
|
||||
@@ -440,35 +460,28 @@ async def siliconcloud_embedding(
|
||||
max_token_size: int = 512,
|
||||
api_key: str = None,
|
||||
) -> np.ndarray:
|
||||
if api_key and not api_key.startswith('Bearer '):
|
||||
api_key = 'Bearer ' + api_key
|
||||
if api_key and not api_key.startswith("Bearer "):
|
||||
api_key = "Bearer " + api_key
|
||||
|
||||
headers = {
|
||||
"Authorization": api_key,
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
headers = {"Authorization": api_key, "Content-Type": "application/json"}
|
||||
|
||||
truncate_texts = [text[0:max_token_size] for text in texts]
|
||||
|
||||
payload = {
|
||||
"model": model,
|
||||
"input": truncate_texts,
|
||||
"encoding_format": "base64"
|
||||
}
|
||||
payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"}
|
||||
|
||||
base64_strings = []
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.post(base_url, headers=headers, json=payload) as response:
|
||||
content = await response.json()
|
||||
if 'code' in content:
|
||||
if "code" in content:
|
||||
raise ValueError(content)
|
||||
base64_strings = [item['embedding'] for item in content['data']]
|
||||
base64_strings = [item["embedding"] for item in content["data"]]
|
||||
|
||||
embeddings = []
|
||||
for string in base64_strings:
|
||||
decode_bytes = base64.b64decode(string)
|
||||
n = len(decode_bytes) // 4
|
||||
float_array = struct.unpack('<' + 'f' * n, decode_bytes)
|
||||
float_array = struct.unpack("<" + "f" * n, decode_bytes)
|
||||
embeddings.append(float_array)
|
||||
return np.array(embeddings)
|
||||
|
||||
@@ -563,6 +576,7 @@ async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
|
||||
|
||||
return embed_text
|
||||
|
||||
|
||||
class Model(BaseModel):
|
||||
"""
|
||||
This is a Pydantic model class named 'Model' that is used to define a custom language model.
|
||||
@@ -580,14 +594,20 @@ class Model(BaseModel):
|
||||
The 'kwargs' dictionary contains the model name and API key to be passed to the function.
|
||||
"""
|
||||
|
||||
gen_func: Callable[[Any], str] = Field(..., description="A function that generates the response from the llm. The response must be a string")
|
||||
kwargs: Dict[str, Any] = Field(..., description="The arguments to pass to the callable function. Eg. the api key, model name, etc")
|
||||
gen_func: Callable[[Any], str] = Field(
|
||||
...,
|
||||
description="A function that generates the response from the llm. The response must be a string",
|
||||
)
|
||||
kwargs: Dict[str, Any] = Field(
|
||||
...,
|
||||
description="The arguments to pass to the callable function. Eg. the api key, model name, etc",
|
||||
)
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
class MultiModel():
|
||||
class MultiModel:
|
||||
"""
|
||||
Distributes the load across multiple language models. Useful for circumventing low rate limits with certain api providers especially if you are on the free tier.
|
||||
Could also be used for spliting across diffrent models or providers.
|
||||
@@ -611,6 +631,7 @@ class MultiModel():
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, models: List[Model]):
|
||||
self._models = models
|
||||
self._current_model = 0
|
||||
@@ -620,17 +641,21 @@ class MultiModel():
|
||||
return self._models[self._current_model]
|
||||
|
||||
async def llm_model_func(
|
||||
self,
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
self, prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
kwargs.pop("model", None) # stop from overwriting the custom model name
|
||||
kwargs.pop("model", None) # stop from overwriting the custom model name
|
||||
next_model = self._next_model()
|
||||
args = dict(prompt=prompt, system_prompt=system_prompt, history_messages=history_messages, **kwargs, **next_model.kwargs)
|
||||
|
||||
return await next_model.gen_func(
|
||||
**args
|
||||
args = dict(
|
||||
prompt=prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
**next_model.kwargs,
|
||||
)
|
||||
|
||||
return await next_model.gen_func(**args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
||||
|
@@ -185,6 +185,7 @@ def save_data_to_file(data, file_name):
|
||||
with open(file_name, "w", encoding="utf-8") as f:
|
||||
json.dump(data, f, ensure_ascii=False, indent=4)
|
||||
|
||||
|
||||
def xml_to_json(xml_file):
|
||||
try:
|
||||
tree = ET.parse(xml_file)
|
||||
@@ -194,31 +195,42 @@ def xml_to_json(xml_file):
|
||||
print(f"Root element: {root.tag}")
|
||||
print(f"Root attributes: {root.attrib}")
|
||||
|
||||
data = {
|
||||
"nodes": [],
|
||||
"edges": []
|
||||
}
|
||||
data = {"nodes": [], "edges": []}
|
||||
|
||||
# Use namespace
|
||||
namespace = {'': 'http://graphml.graphdrawing.org/xmlns'}
|
||||
namespace = {"": "http://graphml.graphdrawing.org/xmlns"}
|
||||
|
||||
for node in root.findall('.//node', namespace):
|
||||
for node in root.findall(".//node", namespace):
|
||||
node_data = {
|
||||
"id": node.get('id').strip('"'),
|
||||
"entity_type": node.find("./data[@key='d0']", namespace).text.strip('"') if node.find("./data[@key='d0']", namespace) is not None else "",
|
||||
"description": node.find("./data[@key='d1']", namespace).text if node.find("./data[@key='d1']", namespace) is not None else "",
|
||||
"source_id": node.find("./data[@key='d2']", namespace).text if node.find("./data[@key='d2']", namespace) is not None else ""
|
||||
"id": node.get("id").strip('"'),
|
||||
"entity_type": node.find("./data[@key='d0']", namespace).text.strip('"')
|
||||
if node.find("./data[@key='d0']", namespace) is not None
|
||||
else "",
|
||||
"description": node.find("./data[@key='d1']", namespace).text
|
||||
if node.find("./data[@key='d1']", namespace) is not None
|
||||
else "",
|
||||
"source_id": node.find("./data[@key='d2']", namespace).text
|
||||
if node.find("./data[@key='d2']", namespace) is not None
|
||||
else "",
|
||||
}
|
||||
data["nodes"].append(node_data)
|
||||
|
||||
for edge in root.findall('.//edge', namespace):
|
||||
for edge in root.findall(".//edge", namespace):
|
||||
edge_data = {
|
||||
"source": edge.get('source').strip('"'),
|
||||
"target": edge.get('target').strip('"'),
|
||||
"weight": float(edge.find("./data[@key='d3']", namespace).text) if edge.find("./data[@key='d3']", namespace) is not None else 0.0,
|
||||
"description": edge.find("./data[@key='d4']", namespace).text if edge.find("./data[@key='d4']", namespace) is not None else "",
|
||||
"keywords": edge.find("./data[@key='d5']", namespace).text if edge.find("./data[@key='d5']", namespace) is not None else "",
|
||||
"source_id": edge.find("./data[@key='d6']", namespace).text if edge.find("./data[@key='d6']", namespace) is not None else ""
|
||||
"source": edge.get("source").strip('"'),
|
||||
"target": edge.get("target").strip('"'),
|
||||
"weight": float(edge.find("./data[@key='d3']", namespace).text)
|
||||
if edge.find("./data[@key='d3']", namespace) is not None
|
||||
else 0.0,
|
||||
"description": edge.find("./data[@key='d4']", namespace).text
|
||||
if edge.find("./data[@key='d4']", namespace) is not None
|
||||
else "",
|
||||
"keywords": edge.find("./data[@key='d5']", namespace).text
|
||||
if edge.find("./data[@key='d5']", namespace) is not None
|
||||
else "",
|
||||
"source_id": edge.find("./data[@key='d6']", namespace).text
|
||||
if edge.find("./data[@key='d6']", namespace) is not None
|
||||
else "",
|
||||
}
|
||||
data["edges"].append(edge_data)
|
||||
|
||||
|
@@ -1,15 +1,15 @@
|
||||
accelerate
|
||||
aioboto3
|
||||
aiohttp
|
||||
graspologic
|
||||
hnswlib
|
||||
nano-vectordb
|
||||
networkx
|
||||
ollama
|
||||
openai
|
||||
pyvis
|
||||
tenacity
|
||||
tiktoken
|
||||
torch
|
||||
transformers
|
||||
xxhash
|
||||
pyvis
|
||||
aiohttp
|
Reference in New Issue
Block a user