implement MongoDB support for VectorDB storage. optimize existing MongoDB implementations

This commit is contained in:
ArnoChen
2025-02-15 00:38:41 +08:00
parent 70fc4cbfb0
commit a600beb619
3 changed files with 456 additions and 60 deletions

View File

@@ -177,7 +177,8 @@ TiDBVectorDBStorage TiDB
PGVectorStorage Postgres
FaissVectorDBStorage Faiss
QdrantVectorDBStorage Qdrant
OracleVectorDBStorag Oracle
OracleVectorDBStorage Oracle
MongoVectorDBStorage MongoDB
```
* DOC_STATUS_STORAGEsupported implement-name

View File

@@ -4,6 +4,7 @@ import numpy as np
import pipmaster as pm
import configparser
from tqdm.asyncio import tqdm as tqdm_async
import asyncio
if not pm.is_installed("pymongo"):
pm.install("pymongo")
@@ -14,16 +15,20 @@ if not pm.is_installed("motor"):
from typing import Any, List, Tuple, Union
from motor.motor_asyncio import AsyncIOMotorClient
from pymongo import MongoClient
from pymongo.operations import SearchIndexModel
from pymongo.errors import PyMongoError
from ..base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
DocProcessingStatus,
DocStatus,
DocStatusStorage,
)
from ..namespace import NameSpace, is_namespace
from ..utils import logger
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
config = configparser.ConfigParser()
@@ -33,56 +38,66 @@ config.read("config.ini", "utf-8")
@dataclass
class MongoKVStorage(BaseKVStorage):
def __post_init__(self):
client = MongoClient(
os.environ.get(
"MONGO_URI",
config.get(
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
),
)
uri = os.environ.get(
"MONGO_URI",
config.get(
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
),
)
client = AsyncIOMotorClient(uri)
database = client.get_database(
os.environ.get(
"MONGO_DATABASE",
config.get("mongodb", "database", fallback="LightRAG"),
)
)
self._data = database.get_collection(self.namespace)
logger.info(f"Use MongoDB as KV {self.namespace}")
self._collection_name = self.namespace
self._data = database.get_collection(self._collection_name)
logger.debug(f"Use MongoDB as KV {self._collection_name}")
# Ensure collection exists
create_collection_if_not_exists(uri, database.name, self._collection_name)
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
return self._data.find_one({"_id": id})
return await self._data.find_one({"_id": id})
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
return list(self._data.find({"_id": {"$in": ids}}))
cursor = self._data.find({"_id": {"$in": ids}})
return await cursor.to_list()
async def filter_keys(self, data: set[str]) -> set[str]:
existing_ids = [
str(x["_id"])
for x in self._data.find({"_id": {"$in": list(data)}}, {"_id": 1})
]
return set([s for s in data if s not in existing_ids])
cursor = self._data.find({"_id": {"$in": list(data)}}, {"_id": 1})
existing_ids = {str(x["_id"]) async for x in cursor}
return data - existing_ids
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
update_tasks = []
for mode, items in data.items():
for k, v in tqdm_async(items.items(), desc="Upserting"):
for k, v in items.items():
key = f"{mode}_{k}"
result = self._data.update_one(
{"_id": key}, {"$setOnInsert": v}, upsert=True
data[mode][k]["_id"] = f"{mode}_{k}"
update_tasks.append(
self._data.update_one(
{"_id": key}, {"$setOnInsert": v}, upsert=True
)
)
if result.upserted_id:
logger.debug(f"\nInserted new document with key: {key}")
data[mode][k]["_id"] = key
await asyncio.gather(*update_tasks)
else:
for k, v in tqdm_async(data.items(), desc="Upserting"):
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
update_tasks = []
for k, v in data.items():
data[k]["_id"] = k
update_tasks.append(
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
)
await asyncio.gather(*update_tasks)
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
res = {}
v = self._data.find_one({"_id": mode + "_" + id})
v = await self._data.find_one({"_id": mode + "_" + id})
if v:
res[id] = v
logger.debug(f"llm_response_cache find one by:{id}")
@@ -100,30 +115,48 @@ class MongoKVStorage(BaseKVStorage):
@dataclass
class MongoDocStatusStorage(DocStatusStorage):
def __post_init__(self):
client = MongoClient(
os.environ.get("MONGO_URI", "mongodb://root:root@localhost:27017/")
uri = os.environ.get(
"MONGO_URI",
config.get(
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
),
)
database = client.get_database(os.environ.get("MONGO_DATABASE", "LightRAG"))
self._data = database.get_collection(self.namespace)
logger.info(f"Use MongoDB as doc status {self.namespace}")
client = AsyncIOMotorClient(uri)
database = client.get_database(
os.environ.get(
"MONGO_DATABASE",
config.get("mongodb", "database", fallback="LightRAG"),
)
)
self._collection_name = self.namespace
self._data = database.get_collection(self._collection_name)
logger.debug(f"Use MongoDB as doc status {self._collection_name}")
# Ensure collection exists
create_collection_if_not_exists(uri, database.name, self._collection_name)
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
return self._data.find_one({"_id": id})
return await self._data.find_one({"_id": id})
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
return list(self._data.find({"_id": {"$in": ids}}))
cursor = self._data.find({"_id": {"$in": ids}})
return await cursor.to_list()
async def filter_keys(self, data: set[str]) -> set[str]:
existing_ids = [
str(x["_id"])
for x in self._data.find({"_id": {"$in": list(data)}}, {"_id": 1})
]
return set([s for s in data if s not in existing_ids])
cursor = self._data.find({"_id": {"$in": list(data)}}, {"_id": 1})
existing_ids = {str(x["_id"]) async for x in cursor}
return data - existing_ids
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
update_tasks = []
for k, v in data.items():
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
data[k]["_id"] = k
update_tasks.append(
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
)
await asyncio.gather(*update_tasks)
async def drop(self) -> None:
"""Drop the collection"""
@@ -132,7 +165,8 @@ class MongoDocStatusStorage(DocStatusStorage):
async def get_status_counts(self) -> dict[str, int]:
"""Get counts of documents in each status"""
pipeline = [{"$group": {"_id": "$status", "count": {"$sum": 1}}}]
result = list(self._data.aggregate(pipeline))
cursor = self._data.aggregate(pipeline)
result = await cursor.to_list()
counts = {}
for doc in result:
counts[doc["_id"]] = doc["count"]
@@ -142,7 +176,8 @@ class MongoDocStatusStorage(DocStatusStorage):
self, status: DocStatus
) -> dict[str, DocProcessingStatus]:
"""Get all documents by status"""
result = list(self._data.find({"status": status.value}))
cursor = self._data.find({"status": status.value})
result = await cursor.to_list()
return {
doc["_id"]: DocProcessingStatus(
content=doc["content"],
@@ -185,26 +220,27 @@ class MongoGraphStorage(BaseGraphStorage):
global_config=global_config,
embedding_func=embedding_func,
)
self.client = AsyncIOMotorClient(
os.environ.get(
"MONGO_URI",
config.get(
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
),
)
uri = os.environ.get(
"MONGO_URI",
config.get(
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
),
)
self.db = self.client[
client = AsyncIOMotorClient(uri)
database = client.get_database(
os.environ.get(
"MONGO_DATABASE",
mongo_database=config.get("mongodb", "database", fallback="LightRAG"),
config.get("mongodb", "database", fallback="LightRAG"),
)
]
self.collection = self.db[
os.environ.get(
"MONGO_KG_COLLECTION",
config.getboolean("mongodb", "kg_collection", fallback="MDB_KG"),
)
]
)
self._collection_name = self.namespace
self.collection = database.get_collection(self._collection_name)
logger.debug(f"Use MongoDB as KG {self._collection_name}")
# Ensure collection exists
create_collection_if_not_exists(uri, database.name, self._collection_name)
#
# -------------------------------------------------------------------------
@@ -451,7 +487,7 @@ class MongoGraphStorage(BaseGraphStorage):
self, source_node_id: str
) -> Union[List[Tuple[str, str]], None]:
"""
Return a list of (target_id, relation) for direct edges from source_node_id.
Return a list of (source_id, target_id) for direct edges from source_node_id.
Demonstrates $graphLookup at maxDepth=0, though direct doc retrieval is simpler.
"""
pipeline = [
@@ -475,7 +511,7 @@ class MongoGraphStorage(BaseGraphStorage):
return None
edges = result[0].get("edges", [])
return [(e["target"], e["relation"]) for e in edges]
return [(source_node_id, e["target"]) for e in edges]
#
# -------------------------------------------------------------------------
@@ -522,7 +558,7 @@ class MongoGraphStorage(BaseGraphStorage):
async def delete_node(self, node_id: str):
"""
1) Remove nodes doc entirely.
1) Remove node's doc entirely.
2) Remove inbound edges from any doc that references node_id.
"""
# Remove inbound edges from all other docs
@@ -542,3 +578,359 @@ class MongoGraphStorage(BaseGraphStorage):
Placeholder for demonstration, raises NotImplementedError.
"""
raise NotImplementedError("Node embedding is not used in lightrag.")
#
# -------------------------------------------------------------------------
# QUERY
# -------------------------------------------------------------------------
#
async def get_all_labels(self) -> list[str]:
"""
Get all existing node _id in the database
Returns:
[id1, id2, ...] # Alphabetically sorted id list
"""
# Use MongoDB's distinct and aggregation to get all unique labels
pipeline = [
{"$group": {"_id": "$_id"}}, # Group by _id
{"$sort": {"_id": 1}}, # Sort alphabetically
]
cursor = self.collection.aggregate(pipeline)
labels = []
async for doc in cursor:
labels.append(doc["_id"])
return labels
async def get_knowledge_graph(
self, node_label: str, max_depth: int = 5
) -> KnowledgeGraph:
"""
Get complete connected subgraph for specified node (including the starting node itself)
Args:
node_label: Label of the nodes to start from
max_depth: Maximum depth of traversal (default: 5)
Returns:
KnowledgeGraph object containing nodes and edges of the subgraph
"""
label = node_label
result = KnowledgeGraph()
seen_nodes = set()
seen_edges = set()
try:
if label == "*":
# Get all nodes and edges
async for node_doc in self.collection.find({}):
node_id = str(node_doc["_id"])
if node_id not in seen_nodes:
result.nodes.append(
KnowledgeGraphNode(
id=node_id,
labels=[node_doc.get("_id")],
properties={
k: v
for k, v in node_doc.items()
if k not in ["_id", "edges"]
},
)
)
seen_nodes.add(node_id)
# Process edges
for edge in node_doc.get("edges", []):
edge_id = f"{node_id}-{edge['target']}"
if edge_id not in seen_edges:
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type=edge.get("relation", ""),
source=node_id,
target=edge["target"],
properties={
k: v
for k, v in edge.items()
if k not in ["target", "relation"]
},
)
)
seen_edges.add(edge_id)
else:
# Verify if starting node exists
start_nodes = self.collection.find({"_id": label})
start_nodes_exist = await start_nodes.to_list(length=1)
if not start_nodes_exist:
logger.warning(f"Starting node with label {label} does not exist!")
return result
# Use $graphLookup for traversal
pipeline = [
{
"$match": {"_id": label}
}, # Start with nodes having the specified label
{
"$graphLookup": {
"from": self._collection_name,
"startWith": "$edges.target",
"connectFromField": "edges.target",
"connectToField": "_id",
"maxDepth": max_depth,
"depthField": "depth",
"as": "connected_nodes",
}
},
]
async for doc in self.collection.aggregate(pipeline):
# Add the start node
node_id = str(doc["_id"])
if node_id not in seen_nodes:
result.nodes.append(
KnowledgeGraphNode(
id=node_id,
labels=[
doc.get(
"_id",
)
],
properties={
k: v
for k, v in doc.items()
if k
not in [
"_id",
"edges",
"connected_nodes",
"depth",
]
},
)
)
seen_nodes.add(node_id)
# Add edges from start node
for edge in doc.get("edges", []):
edge_id = f"{node_id}-{edge['target']}"
if edge_id not in seen_edges:
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type=edge.get("relation", ""),
source=node_id,
target=edge["target"],
properties={
k: v
for k, v in edge.items()
if k not in ["target", "relation"]
},
)
)
seen_edges.add(edge_id)
# Add connected nodes and their edges
for connected in doc.get("connected_nodes", []):
node_id = str(connected["_id"])
if node_id not in seen_nodes:
result.nodes.append(
KnowledgeGraphNode(
id=node_id,
labels=[connected.get("_id")],
properties={
k: v
for k, v in connected.items()
if k not in ["_id", "edges", "depth"]
},
)
)
seen_nodes.add(node_id)
# Add edges from connected nodes
for edge in connected.get("edges", []):
edge_id = f"{node_id}-{edge['target']}"
if edge_id not in seen_edges:
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type=edge.get("relation", ""),
source=node_id,
target=edge["target"],
properties={
k: v
for k, v in edge.items()
if k not in ["target", "relation"]
},
)
)
seen_edges.add(edge_id)
logger.info(
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
except PyMongoError as e:
logger.error(f"MongoDB query failed: {str(e)}")
return result
@dataclass
class MongoVectorDBStorage(BaseVectorStorage):
cosine_better_than_threshold: float = None
def __post_init__(self):
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = kwargs.get("cosine_better_than_threshold")
if cosine_threshold is None:
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
uri = os.environ.get(
"MONGO_URI",
config.get(
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
),
)
client = AsyncIOMotorClient(uri)
database = client.get_database(
os.environ.get(
"MONGO_DATABASE",
config.get("mongodb", "database", fallback="LightRAG"),
)
)
self._collection_name = self.namespace
self._data = database.get_collection(self._collection_name)
self._max_batch_size = self.global_config["embedding_batch_num"]
logger.debug(f"Use MongoDB as VDB {self._collection_name}")
# Ensure collection exists
create_collection_if_not_exists(uri, database.name, self._collection_name)
# Ensure vector index exists
self.create_vector_index(uri, database.name, self._collection_name)
def create_vector_index(self, uri: str, database_name: str, collection_name: str):
"""Creates an Atlas Vector Search index."""
client = MongoClient(uri)
collection = client.get_database(database_name).get_collection(
self._collection_name
)
try:
search_index_model = SearchIndexModel(
definition={
"fields": [
{
"type": "vector",
"numDimensions": self.embedding_func.embedding_dim, # Ensure correct dimensions
"path": "vector",
"similarity": "cosine", # Options: euclidean, cosine, dotProduct
}
]
},
name="vector_knn_index",
type="vectorSearch",
)
collection.create_search_index(search_index_model)
logger.info("Vector index created successfully.")
except PyMongoError as _:
logger.debug("vector index already exist")
async def upsert(self, data: dict[str, dict]):
logger.debug(f"Inserting {len(data)} vectors to {self.namespace}")
if not data:
logger.warning("You are inserting an empty data set to vector DB")
return []
list_data = [
{
"_id": k,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
async def wrapped_task(batch):
result = await self.embedding_func(batch)
pbar.update(1)
return result
embedding_tasks = [wrapped_task(batch) for batch in batches]
pbar = tqdm_async(
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
)
embeddings_list = await asyncio.gather(*embedding_tasks)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["vector"] = np.array(embeddings[i], dtype=np.float32).tolist()
update_tasks = []
for doc in list_data:
update_tasks.append(
self._data.update_one({"_id": doc["_id"]}, {"$set": doc}, upsert=True)
)
await asyncio.gather(*update_tasks)
return list_data
async def query(self, query, top_k=5):
"""Queries the vector database using Atlas Vector Search."""
# Generate the embedding
embedding = await self.embedding_func([query])
# Convert numpy array to a list to ensure compatibility with MongoDB
query_vector = embedding[0].tolist()
# Define the aggregation pipeline with the converted query vector
pipeline = [
{
"$vectorSearch": {
"index": "vector_knn_index", # Ensure this matches the created index name
"path": "vector",
"queryVector": query_vector,
"numCandidates": 100, # Adjust for performance
"limit": top_k,
}
},
{"$addFields": {"score": {"$meta": "vectorSearchScore"}}},
{"$match": {"score": {"$gte": self.cosine_better_than_threshold}}},
{"$project": {"vector": 0}},
]
# Execute the aggregation pipeline
cursor = self._data.aggregate(pipeline)
results = await cursor.to_list()
# Format and return the results
return [
{**doc, "id": doc["_id"], "distance": doc.get("score", None)}
for doc in results
]
def create_collection_if_not_exists(uri: str, database_name: str, collection_name: str):
"""Check if the collection exists. if not, create it."""
client = MongoClient(uri)
database = client.get_database(database_name)
collection_names = database.list_collection_names()
if collection_name not in collection_names:
database.create_collection(collection_name)
logger.info(f"Created collection: {collection_name}")
else:
logger.debug(f"Collection '{collection_name}' already exists.")

View File

@@ -76,6 +76,7 @@ STORAGE_IMPLEMENTATIONS = {
"FaissVectorDBStorage",
"QdrantVectorDBStorage",
"OracleVectorDBStorage",
"MongoVectorDBStorage",
],
"required_methods": ["query", "upsert"],
},
@@ -140,6 +141,7 @@ STORAGE_ENV_REQUIREMENTS = {
"ORACLE_PASSWORD",
"ORACLE_CONFIG_DIR",
],
"MongoVectorDBStorage": [],
# Document Status Storage Implementations
"JsonDocStatusStorage": [],
"PGDocStatusStorage": ["POSTGRES_USER", "POSTGRES_PASSWORD", "POSTGRES_DATABASE"],
@@ -160,6 +162,7 @@ STORAGES = {
"MongoKVStorage": ".kg.mongo_impl",
"MongoDocStatusStorage": ".kg.mongo_impl",
"MongoGraphStorage": ".kg.mongo_impl",
"MongoVectorDBStorage": ".kg.mongo_impl",
"RedisKVStorage": ".kg.redis_impl",
"ChromaVectorDBStorage": ".kg.chroma_impl",
"TiDBKVStorage": ".kg.tidb_impl",