Optmize parallel processing on chunks extraction

This commit is contained in:
yangdx
2025-04-04 00:06:42 +08:00
parent 6b240fa9b2
commit a809bc7945

View File

@@ -25,7 +25,6 @@ from .utils import (
CacheData, CacheData,
statistic_data, statistic_data,
get_conversation_turns, get_conversation_turns,
verbose_debug,
) )
from .base import ( from .base import (
BaseGraphStorage, BaseGraphStorage,
@@ -441,6 +440,12 @@ async def extract_entities(
processed_chunks = 0 processed_chunks = 0
total_chunks = len(ordered_chunks) total_chunks = len(ordered_chunks)
total_entities_count = 0
total_relations_count = 0
# Get lock manager from shared storage
from .kg.shared_storage import get_graph_db_lock
graph_db_lock = get_graph_db_lock(enable_logging=False)
async def _user_llm_func_with_cache( async def _user_llm_func_with_cache(
input_text: str, history_messages: list[dict[str, str]] = None input_text: str, history_messages: list[dict[str, str]] = None
@@ -539,7 +544,7 @@ async def extract_entities(
chunk_key_dp (tuple[str, TextChunkSchema]): chunk_key_dp (tuple[str, TextChunkSchema]):
("chunk-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int}) ("chunk-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int})
""" """
nonlocal processed_chunks nonlocal processed_chunks, total_entities_count, total_relations_count
chunk_key = chunk_key_dp[0] chunk_key = chunk_key_dp[0]
chunk_dp = chunk_key_dp[1] chunk_dp = chunk_key_dp[1]
content = chunk_dp["content"] content = chunk_dp["content"]
@@ -597,75 +602,30 @@ async def extract_entities(
async with pipeline_status_lock: async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message) pipeline_status["history_messages"].append(log_message)
return dict(maybe_nodes), dict(maybe_edges)
tasks = [_process_single_content(c) for c in ordered_chunks] # Use graph database lock to ensure atomic merges and updates
results = await asyncio.gather(*tasks) chunk_entities_data = []
chunk_relationships_data = []
maybe_nodes = defaultdict(list)
maybe_edges = defaultdict(list)
for m_nodes, m_edges in results:
for k, v in m_nodes.items():
maybe_nodes[k].extend(v)
for k, v in m_edges.items():
maybe_edges[tuple(sorted(k))].extend(v)
from .kg.shared_storage import get_graph_db_lock
graph_db_lock = get_graph_db_lock(enable_logging=False)
# Ensure that nodes and edges are merged and upserted atomically
async with graph_db_lock: async with graph_db_lock:
# serial processing nodes under lock # Process and update entities
all_entities_data = [] for entity_name, entities in maybe_nodes.items():
for k, v in maybe_nodes.items(): entity_data = await _merge_nodes_then_upsert(
entity_data = await _merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config) entity_name, entities, knowledge_graph_inst, global_config
all_entities_data.append(entity_data) )
chunk_entities_data.append(entity_data)
# serial processing edges under lock # Process and update relationships
all_relationships_data = [] for edge_key, edges in maybe_edges.items():
for k, v in maybe_edges.items(): # Ensure edge direction consistency
sorted_edge_key = tuple(sorted(edge_key))
edge_data = await _merge_edges_then_upsert( edge_data = await _merge_edges_then_upsert(
k[0], k[1], v, knowledge_graph_inst, global_config sorted_edge_key[0], sorted_edge_key[1], edges, knowledge_graph_inst, global_config
) )
all_relationships_data.append(edge_data) chunk_relationships_data.append(edge_data)
if not (all_entities_data or all_relationships_data): # Update vector database (within the same lock to ensure atomicity)
log_message = "Didn't extract any entities and relationships." if entity_vdb is not None and chunk_entities_data:
logger.info(log_message)
if pipeline_status is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
return
if not all_entities_data:
log_message = "Didn't extract any entities"
logger.info(log_message)
if pipeline_status is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
if not all_relationships_data:
log_message = "Didn't extract any relationships"
logger.info(log_message)
if pipeline_status is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
log_message = f"Extracted {len(all_entities_data)} entities + {len(all_relationships_data)} relationships (deduplicated)"
logger.info(log_message)
if pipeline_status is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
verbose_debug(
f"New entities:{all_entities_data}, relationships:{all_relationships_data}"
)
verbose_debug(f"New relationships:{all_relationships_data}")
if entity_vdb is not None:
data_for_vdb = { data_for_vdb = {
compute_mdhash_id(dp["entity_name"], prefix="ent-"): { compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
"entity_name": dp["entity_name"], "entity_name": dp["entity_name"],
@@ -674,11 +634,11 @@ async def extract_entities(
"source_id": dp["source_id"], "source_id": dp["source_id"],
"file_path": dp.get("file_path", "unknown_source"), "file_path": dp.get("file_path", "unknown_source"),
} }
for dp in all_entities_data for dp in chunk_entities_data
} }
await entity_vdb.upsert(data_for_vdb) await entity_vdb.upsert(data_for_vdb)
if relationships_vdb is not None: if relationships_vdb is not None and chunk_relationships_data:
data_for_vdb = { data_for_vdb = {
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): { compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
"src_id": dp["src_id"], "src_id": dp["src_id"],
@@ -688,10 +648,25 @@ async def extract_entities(
"source_id": dp["source_id"], "source_id": dp["source_id"],
"file_path": dp.get("file_path", "unknown_source"), "file_path": dp.get("file_path", "unknown_source"),
} }
for dp in all_relationships_data for dp in chunk_relationships_data
} }
await relationships_vdb.upsert(data_for_vdb) await relationships_vdb.upsert(data_for_vdb)
# Update counters
total_entities_count += len(chunk_entities_data)
total_relations_count += len(chunk_relationships_data)
# Handle all chunks in parallel
tasks = [_process_single_content(c) for c in ordered_chunks]
await asyncio.gather(*tasks)
log_message = f"Extracted {total_entities_count} entities + {total_relations_count} relationships (total)"
logger.info(log_message)
if pipeline_status is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
async def kg_query( async def kg_query(
query: str, query: str,