Add support for OpenAI Compatible Streaming output
This commit is contained in:
@@ -91,26 +91,40 @@ async def openai_complete_if_cache(
|
||||
response = await openai_async_client.chat.completions.create(
|
||||
model=model, messages=messages, **kwargs
|
||||
)
|
||||
content = response.choices[0].message.content
|
||||
if r"\u" in content:
|
||||
content = content.encode("utf-8").decode("unicode_escape")
|
||||
|
||||
# Save to cache
|
||||
await save_to_cache(
|
||||
hashing_kv,
|
||||
CacheData(
|
||||
args_hash=args_hash,
|
||||
content=content,
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
quantized=quantized,
|
||||
min_val=min_val,
|
||||
max_val=max_val,
|
||||
mode=mode,
|
||||
),
|
||||
)
|
||||
if hasattr(response, "__aiter__"):
|
||||
|
||||
return content
|
||||
async def inner():
|
||||
async for chunk in response:
|
||||
content = chunk.choices[0].delta.content
|
||||
if content is None:
|
||||
continue
|
||||
if r"\u" in content:
|
||||
content = content.encode("utf-8").decode("unicode_escape")
|
||||
yield content
|
||||
|
||||
return inner()
|
||||
else:
|
||||
content = response.choices[0].message.content
|
||||
if r"\u" in content:
|
||||
content = content.encode("utf-8").decode("unicode_escape")
|
||||
|
||||
# Save to cache
|
||||
await save_to_cache(
|
||||
hashing_kv,
|
||||
CacheData(
|
||||
args_hash=args_hash,
|
||||
content=content,
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
quantized=quantized,
|
||||
min_val=min_val,
|
||||
max_val=max_val,
|
||||
mode=mode,
|
||||
),
|
||||
)
|
||||
|
||||
return content
|
||||
|
||||
|
||||
@retry(
|
||||
@@ -431,7 +445,7 @@ async def ollama_model_if_cache(
|
||||
|
||||
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
||||
if stream:
|
||||
""" cannot cache stream response """
|
||||
"""cannot cache stream response"""
|
||||
|
||||
async def inner():
|
||||
async for chunk in response:
|
||||
@@ -613,6 +627,22 @@ class GPTKeywordExtractionFormat(BaseModel):
|
||||
low_level_keywords: List[str]
|
||||
|
||||
|
||||
async def openai_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> Union[str, AsyncIterator[str]]:
|
||||
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
||||
if keyword_extraction:
|
||||
kwargs["response_format"] = "json"
|
||||
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
||||
return await openai_complete_if_cache(
|
||||
model_name,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
async def gpt_4o_complete(
|
||||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
||||
) -> str:
|
||||
@@ -1089,12 +1119,14 @@ async def save_to_cache(hashing_kv, cache_data: CacheData):
|
||||
mode_cache[cache_data.args_hash] = {
|
||||
"return": cache_data.content,
|
||||
"model": cache_data.model,
|
||||
"embedding": cache_data.quantized.tobytes().hex()
|
||||
if cache_data.quantized is not None
|
||||
else None,
|
||||
"embedding_shape": cache_data.quantized.shape
|
||||
if cache_data.quantized is not None
|
||||
else None,
|
||||
"embedding": (
|
||||
cache_data.quantized.tobytes().hex()
|
||||
if cache_data.quantized is not None
|
||||
else None
|
||||
),
|
||||
"embedding_shape": (
|
||||
cache_data.quantized.shape if cache_data.quantized is not None else None
|
||||
),
|
||||
"embedding_min": cache_data.min_val,
|
||||
"embedding_max": cache_data.max_val,
|
||||
"original_prompt": cache_data.prompt,
|
||||
|
Reference in New Issue
Block a user